Skip to main content

Exchange Processes Across the Sediment Water Interface

  • Chapter
The Northern North Atlantic

Abstract

The sediment water interface represents a physical boundary between the water column and the sediment, which thus separates two environments with processes of significantly different intensities and spatial and temporal dimensions. Furthermore, the sediment water interface (SWI) does not only separate the present day environment from the paleoenvironmental record, but is also a layer where pelagic signal s are strongly modified before their final documentation over geological time scales. Thus, the SWI is one of the key areas of the global carbon cycle, where carbon is by burial removed from, or returned by remineralization to the atmosphere ocean system. Therefore, the quantification of fluxes reaching the seafloor and the process oriented understanding of degradation and remineralization pathways are important for a dynamic comprehension of marine geochemical cycles, the coupling between present dayand paleo-processes and the suitability of proxies applied for paleo-reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. F., G. T. Rowe, P. F. Kemp, S. Trumbore, and P. E. Biscaye, Carbon budget for the mid-slope depocenter of the Middle Atlantic Bight, Deep-Sea Res., 41 (2/3), 669–703, 1994.

    Google Scholar 

  • Barnett, P. R. 0., J. Watson, and D. Connelly, A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments, Oceanol. Acta, 7, 399–408, 1984.

    Google Scholar 

  • Bauer, J. E., and E. R. M. Druffel, Ocean margins as a significant source oforganic matter to the deep open ocean, Nature, 392, 482–485, 1998.

    Article  Google Scholar 

  • Bender, M. L., and D. T. Heggie, Fate of organic carbon reaching the deep sea floor: a status report, Geochim. Cosmochim. Acta, 48, 997–986, 1984.

    Article  Google Scholar 

  • Billett, D. S. M., R. S. Lampitt, A. L. Rice, and R. F. C. Mantoura, Seasonal sedimentation of phytoplankton to the deep sea benthos, Nature, 302, 520–522, 1983.

    Article  Google Scholar 

  • Boudreau, B. P., Is burial a master parameter for bioturbation?, Geochim. Cosmochim. Acta, 58 (4), 1243–1249, 1994.

    Article  Google Scholar 

  • Boudreau, B. P., A one-dimensional model for bedboundary layer particle exchange, J. Mar. Syst., 11, 279–303, 1996.

    Article  Google Scholar 

  • Boudreau, B. P., Mean mixed depth of sediments: The wherefore and the why, Limnol. Oceanogr., 43 (3), 524–526, 1998.

    Article  Google Scholar 

  • Deming, J. W., Ecological strategies of barophilic bacteria in the deep ocean, Microb. Science, 3 (7), 205–211, 1986.

    Google Scholar 

  • Deuser, W. G., F. E. Muller-Karger, R. H. Evans, O. B. Brown, W. E. Esaias, and G. C. Feldman, Surfaceocean color and deep-ocean carbon flux: how close a connection, Deep-Sea Res., 37 (8), 1331–1343, 1990.

    Article  Google Scholar 

  • Falkowski, P., R. Barber, and V. Smetacek, Biogeochemical controls and feedbacks on ocean primary production, Science, 281, 200–206, 1998.

    Article  Google Scholar 

  • Freeman, K. H., J. M. Hayes, J.-M. Trendel, and P. Albrecht, Evidence from carbon isotope measurement for diverse origins of sedimentary hydrocarbons, Nature, 343, 254–256, 1990.

    Article  Google Scholar 

  • Glud, R. N., J. K. Gundersen, B. B. Jørgensen, N. P. Revsbech, and H. D. Schulz, Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements, Deep-Sea Res., 41 (11/12), 1767–1788, 1994.

    Google Scholar 

  • Graf, G., Benthic-pelagic coupling in a deep-sea benthic community, Nature, 341, 437–439, 1989.

    Article  Google Scholar 

  • Graf, G., Benthic-pelagic coupling: A benthic view, Oceanogr. Mar. Biol. Ann. Rev., 30, 149–190, 1992.

    Google Scholar 

  • Graf, G., and R. Rosenberg, Bioresuspension and biodeposition: areview, J Mar. Syst., 11, 269–278, 1997.

    Article  Google Scholar 

  • Gundersen, J. K., and B. B. Jørgensen, Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor, Nature, 345, 604–607, 1990.

    Article  Google Scholar 

  • Gust, G., The benthic boundary layer, in Oceanography, edited by J. Sündermann, pp. 345–398, Springer, Heidelberg, 1989.

    Google Scholar 

  • Heip, C., G. Duineveld, E. Flach, G. Graf, W. Helder, P. M. J. Herman, M. Lavaleye, J. J. Middelburg, O. Pfannkuche, K. Soetaert, T. Soltwedel, H. de Stigter, L. Thomsen, J. Vanaverbeke and P. de Wilde, The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (N. E. Atlantic), Deep-Sea Res., in press.

    Google Scholar 

  • Jahnke, R. A., and G. A. Jackson, The spatial distribution of sea floor oxygen consumption in the Atlantic and Pacific Ocean, in Deep-Sea Food Chains and the Global Carbon Cycle, edited by G. T. Rowe, and V. Pariente, pp. 11–27, Kluwer Acad. Publ., Dordrecht, 1992.

    Google Scholar 

  • Jahnke, R. A., The global ocean flux of particulate organic carbon: areal distribution and magnitude, Global Biogeochem. Cycles, 10 (1), 71–88, 1996.

    Article  Google Scholar 

  • Jumars, P. A., D. R. Jackson, T. F. Gross, and C. Sherwood, Acoustic remote sensing ofbenthic activity: A statistical approach, Limnol. Oceanogr., 41, 1220–1241, 1996.

    Article  Google Scholar 

  • Keil, R. G., L. M. Mayer, P. D. Quay, J. E. Richey, and J. I. Hedges, Loss of organic matter from riverine particles in deltas, Geochim. Cosmochim. Acta, 61, 1507–1511, 1997.

    Article  Google Scholar 

  • Keil, R. G., D. B. Montluçon, F. G. Prahl, and J. I. Hedges, Sorptive preservation of labile organic matter in marine sediments, Nature, 370, 549–552, 1994.

    Article  Google Scholar 

  • Köster, M., and L.-A. Meyer-Reil, Concentration and microbial decomposition of organic material in sediments of the Norwegian-Greenland Sea, this volume. Lammers, S., E. Suess, and M. Hovland, A large methane plume east of Bear Island (Barents Sea): implications for the marine methane cycle, Geol. Rundsch., 84, 59–66, 1995.

    Google Scholar 

  • Lampitt, R. S., Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension, Deep-Sea Res., 32 (8), 885–897, 1985.

    Article  Google Scholar 

  • Lampitt, R. S., R. C. T. Raine, D. S. M. Billett, and A. L. Rice, Material supply to the European continental slope: A budget based on benthic oxygen demand and organic supply, Deep-Sea Res. I, 42 (11/12), 1865–1880, 1995.

    Google Scholar 

  • Lampitt, R. S., and A. N. Antia, Particle flux in deep seas: Regional characteristics and temporal variability, Deep-Sea Res., 44 (8), 1377–1403, 1997.

    Article  Google Scholar 

  • Lochte, K., and C. M. Turley, Bacteria and cyanobacteria associated with phytodetritus in the deep sea, Nature, 333, 67–69, 1988.

    Article  Google Scholar 

  • Lochte, K., Bacterial Standing Stock and Consumption of Organic Carbon in the Benthic Boundary Layer of the Abyssal North Atlantic, in Deep-Sea Food Chains and the Global Carbon Cycle, edited by G. T. Rowe, and V. Pariente, pp. 1–10, Kluwer Acad. Publ., Dordrecht, 1992.

    Chapter  Google Scholar 

  • Mayer, L. M., Sedimentary organic matter preservation: an assessment and speculative synthesis — a comment, Mar. Chem., 49, 123–126, 1995.

    Article  Google Scholar 

  • Mayer, L. M., L. L. Schick, T. Sawyer, C. J. Plante, P. A. Jumars, and R. L. Self, Bioavailable amino acids in sediments: A biomimetic, kinetics-based approach, Limnol. Oceanogr., 40, 511–520, 1995.

    Article  Google Scholar 

  • Mienert, J., J. Posewang, and D. Lukas, Changes in the hydrate stability zone on the Norwegian Margin and their consequence for methane and carbon releases into the oceanosphere, this volume.

    Google Scholar 

  • Müster, D., and R. J. Chrost, Origin, composition, and microbial utilization of dissolved organic matter, in Aquatic Microbial Ecology, edited by J. Overbeck, and R. J. Chrost, pp. 8–37, Springer, Heidelberg, 1990.

    Chapter  Google Scholar 

  • Newberger, P. A., and D. R. Caldwell, Mixing and the bottom nepheloid layer, Mar. Geol., 41, 321–336, 1981.

    Article  Google Scholar 

  • Pace, M. L., G.A. Knauer, D. M. Karl, andJ. H. Martin, Primary production, new production and vertical flux in the eastern Pacific Ocean, Nature, 325, 803–804, 1987.

    Article  Google Scholar 

  • Pfannkuche, O., A. Boetius, K. Lochte, D. Lundgreen, and H. Thiel, Responses of deep-sea benthos to sedimentation patterns in the North-East Atlantic in 1992, Deep-Sea Res. I, 46 (4), 573–596, 1999.

    Article  Google Scholar 

  • Pfannkuche, O., Benthic response to the sedimentation of particulate organic matter at the BIOTRANS station, 47° N, 20° W, Deep-Sea Res., 40, 135–149, 1993.

    Article  Google Scholar 

  • Piepenburg, D., A. Brandt, K. v. Juterzenka, M. Mayer, K. Schnack, D. Seiler, D. Witte, and M. Spindler, Patterns and determinants of the distribution and structure of benthic faunal assemblages in the northern North Atlantic, this volume.

    Google Scholar 

  • Rhoads, D. C., L. F. Boyer, B. L. Welsh, and G. R. Hampson, Seasonal dynamics of detritus in the benthic turbidity zone (BTZ); Implications for bottom-rack molluscan mariculture, Bull. Mar. Sci., 35 (3), 536–549, 1984.

    Google Scholar 

  • Ritzrau, w., Microbial activity in the benthic boundary layer (BBL): Small scale distribution and its relationship to the hydrodynamic regime, J. Sea Res., 36 (3/4), 171–180, 1996.

    Article  Google Scholar 

  • Ritzrau, W., and H. Fohrmann, Field and numerical studies of near bed aggregate dynamics, in Computerized Modeling of Sedimentary Systems, edited by J. Harff, W. Lemke, and K. Stattegger, pp. 183–207, Springer, Heidelberg, 1998.

    Google Scholar 

  • Ritzrau, W., L. Thomsen, R. J. Lara, and G. Graf, Enhanced microbial utilisation of dissolved amino acids indicates rapid modification of organic matter in the benthic boundary layer, Mar. Ecol. Prog. Ser., 156, 33–41, 1997.

    Article  Google Scholar 

  • Ritzrau, W., G. Graf, A. Scheltz, and W. Queisser, Bentho-pelagic coupling and carbon dynamics in the northern North Atlantic, this volume.

    Google Scholar 

  • Rowe, G. T., G. S. Boland, W. C. Phoel, R. F. Anderson, and P.E. Biscaye, Deep-sea floor respiration as an indicator of lateral input of biogenic detritus from continental margins, Deep-Sea Res., 41 (2/3), 657–668, 1994.

    Google Scholar 

  • Sauter, E. J., M. Schlüter, and E. Suess, Organic carbon flux and remineralisation in surface sediments of the northern North Atlantic derived from pore-water oxygen microprofiles, Deep-Sea Res. I, in press.

    Google Scholar 

  • Sayles, F. L., Response of benthic oxygen demand to particulate organic carbon supply in the deep sea near Bermuda, Nature, 371, 686–371, 1994.

    Article  Google Scholar 

  • Schlüter, M., E. J. Sauter, A. Schäfer-Pinto, W. Ritzrau, and E. Suess, Spatial budget of organic carbon flux to the seafloor of the northern North Atlantic (60° N-80° N), Global Biogeochem. Cycles, 14 (1), 329–340, 2000.

    Article  Google Scholar 

  • Schlüter, M., E. J. Sauter, D. Schulz-Bull, W. Balzer, and E. Suess, Fluxes of organic carbon and biogenic silica reaching the seafloor: A comparison of high northernand southernlatitudesof theAtlanticOcean, this volume.

    Google Scholar 

  • Sibuet, M., S. K. Juniper, and G. Pautot, Cold-seep benthic communities in the Japan subduction zones: geological control of community development, J. Mar. Res., 46, 333–348, 1998.

    Article  Google Scholar 

  • Smith, C. R., R. H. Pope, D. J. DeMaster, and L. Maggard, Age-dependent mixing of deep-sea sediments, Geochim. Cosmochim. Acta, 57, 1473–1488, 1993.

    Article  Google Scholar 

  • Soetaert, K., P. M. J. Herman, and J. J. Middelburg, A model of early diagenetic processes from the shelf to abyssal depths, Geochim. Cosmochim. Acta, 60 (6), 1019–1040, 1996.

    Article  Google Scholar 

  • Southward, A. J., E. C. Southward, P. R. Dando, G. H. Rau, H. Felbeck, and H. Flügel, Bacterial symbionts and low 13C/ 12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism, Nature, 293, 616–620, 1981.

    Article  Google Scholar 

  • Stephens, M. P., D. C. Kadko, C. R. Smith, and M. Latasa, Chlorophyll-a and phaeopigments as tracer of labile organic matter at the central equatorial Pacific seafloor, Geochim. Cosmochim. Acta, 61, 4605–4619, 1997.

    Article  Google Scholar 

  • Suess, E., Particulate organic carbon flux in the oceans; surface productivity and oxygen utilization, Nature, 288, 260–263, 1980.

    Article  Google Scholar 

  • Suess, E., B. Carson, S. D. Ritger, J. C. Moore, M. L. Jones, L. D. Kulm, and G. R. Cochrane, Biological communities at vent sites along the subduction zone off Oregon, Biol. Soc. Wash. Bull., 6, 475–484, 1985.

    Google Scholar 

  • Suess, E., and M. J. Whiticar, Methane-derivedCO2in pore fluids expelled from the Oregon subduction zone, Palaeogeogr., Palaeoclimatol., Palaeoecol., 71, 119–136, 1998.

    Article  Google Scholar 

  • Sun, M., R. C. Aller, and C. Lee, Early diagenesis of chlorophyll-a in Long Island Sound sediments: a measure of carbon flux and particle reworking, J. Mar. Res., 45 (2), 379–399, 1991.

    Article  Google Scholar 

  • Thimsen, C. A., and R. G. Keil, Potential interactions between sedimentary dissolved organic matter and mineral surfaces, Mar. Chem., 62, 65–76, 1998.

    Article  Google Scholar 

  • Thomsen, L., and G. Graf, Characteristics of suspended particulate matter in the benthic boundary layer of the continental margin of the western Barents Sea, Oceanol. Acta, 17 (6), 597–607, 1995.

    Google Scholar 

  • Thomsen, L., G. Graf, V. Martens, and E. Steen, An instrument for sampling water from the bottom nepheloid layer, Cant. Shelf Res., 14 (7/8), 871–882, 1994.

    Article  Google Scholar 

  • Westrich, J. T., and R. A. Berner, The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested, Limnol. Oceanogr., 29, 236–249, 1984.

    Article  Google Scholar 

  • Wheatcroft, R. A., Experimental tests for particle size dependent bioturbation in the deep ocean, Limnol. Oceanogr., 37 (1), 90–104, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ritzrau, W., Graf, G., Schlüter, M. (2001). Exchange Processes Across the Sediment Water Interface. In: Schäfer, P., Ritzrau, W., Schlüter, M., Thiede, J. (eds) The Northern North Atlantic. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56876-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56876-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63136-8

  • Online ISBN: 978-3-642-56876-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics