Records and Processes of Near-Bottom Sediment Transport along the Norwegian-Greenland Sea Margins during Holocene and Late Weichselian (Termination I) Times

  • Jan Rumohr
  • Frank Blaume
  • Helmut Erlenkeuser
  • Hermann Fohrmann
  • Franz-Josef Hollender
  • Jürgen Mienert
  • Christian Schäfer-Neth


Acoustic mapping and sampling of Holocene and Late Weichselian deglacial sediments combined with oceanographic measurements in the sediment source and accumulation areas on the eastern continental margin of the Norwegian-Greenland Sea provide evidence that episodic transport towards high-accumulation areas is primarily downslope and gravity driven. Triggered by various hydrographic conditions, the runoff repeatedly followed the local gullies and channels of the seafloor.

In contrast, sedimentological and oceanographic data from a topographic sediment trap on the Vøring Plateau at the Norwegian Sea margin indicate upslope sediment transport in the bottom nepheloid layer.

Less comprehensive data from the Greenland Sea margin suggest that the prerequisites to sediment advection in terms of oceanographic structure, availability and sources of sediment differ from those of the eastern margin. The resulting near-bottom sediment transport is less pronounced. Advected sediments reaching the continental rise and the abyssal plain follow an old channel system.

The forcing mechanisms of sediment advection changed dramatically from Late Weichselian to Holocene times due to changes in sea level, sediment availability, and water-mass stratification.


Debris Flow Continental Slope Sediment Availability North Atlantic Water Storegga Slide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonow, M., Sedimentationsmuster urn den Vesteris Seamount (zentrale Grönlandsee) in den letzten 250.000 Jahren (Sedimentation patterns around the Vesteris seamount (central Greenland Sea) during the past 250,000 years), GEOMAR Report, 44, 1121, 1995.Google Scholar
  2. Antonow, M., P. M. Goldschmidt, and H. Erlenkeuser, The climate-sensitive Vesterisbanken area (central Greenland Sea): Deposition al environment and paleoceanography during the past 250,000 years, in Contributions to the Micropaleontology and Paleoceanography of the Northern North Atlantic, edited by H. C. Hass, and M.A Kaminski, pp. 101–118, Grzybowski Foundation, 1997.Google Scholar
  3. Atterberg, A., Die mechanische Bodenanalyse und die Klassifikation der BOden Mittelschwedens, Internationale Mitteilungen für Bodenkunde, 1–314, 1912.Google Scholar
  4. Backhaus, J. O., H. Fohrmann, J. Kämpf, and A. Rubino, Formation and export of water masses produced in Arctic shelf polynias-process studies of oceanic convection, ICES Journal of Marine Science, 54, 336–382, 1997.CrossRefGoogle Scholar
  5. Bacon, M. P., and M. M. Rutgers van der Loeff, Removal of thorium-234 by scavenging in the bottom nepheloid layer of the ocean, Earth and Planetary Science Letters, 92, 157–164, 1989.CrossRefGoogle Scholar
  6. Blaume, F., Hochakkumulationsgebiete am norwegischen Kontinentalhang: Sedimentologische Abbilder Topographie-geführter Strömungsmuster, Berichte Sonderforschungsbereich 313, Univ. Kiel, 36, 1–150, 1992.Google Scholar
  7. Blindheim, J., Cascading of Barents Sea bottom water into the Norwegian Sea, Rapp. P.-v.Réun. Cons. into Explo r. Mer, 188, 49–58, 1989.Google Scholar
  8. Budéus, G., and W. Schneider, On the hydrography of the Northeast Water Polynia, Journal of Geophysical Research, 100 (C3), 4287–4299, 1995.CrossRefGoogle Scholar
  9. Bugge, T., Submarine slides on the Norwegian continental margin, with special emphasis on the Storegga area, Continental Shelfand Petroleum Institute Publication, 110, 152, 1983.Google Scholar
  10. Bugge, T., S. Befring, R. H. Belderson, T. Eidvin, E. Jansen, N. H. Kenyon, H. Holtedahl, and H. P. Sejrup, A giant three-stage submarine slide off Norway, Geo-Marine Letters, 7, 191–198, 1987.CrossRefGoogle Scholar
  11. Bugge, T., R. H. Belderson, and N. H. Kenyon, The Storegga slide, Philosophical Transactions, Royal Society London, 325 (A), 357–388, 1988.Google Scholar
  12. Cacchione, D. A, and D. E. Drake, Nepheloid layers and internal waves over continental shelves and slopes, Geo-Marine Letters, 6, 147–152, 1986.CrossRefGoogle Scholar
  13. Crane, K., and A. Solheim, Sea floor atlas of the northern Norwegian-Greenland Sea, Norsk Polarinstitutt Meddelelser, 137, 1–172, 1995.Google Scholar
  14. Damuth, J. E., Echo character ofthe Norwegian-Greenland Sea: relationship to Quaternary sedimentation, Marine Geology, 28, 1–36, 1978.CrossRefGoogle Scholar
  15. Dowdeswell, J.A., N. H. Kenyon, A Elverhøi, J. S. Laberg, F.-J. Hollender, J. Mienert, and M. J. Siegert, Large-scale sedimentation on the glacier-influenced Polar North Atlantic margins: Long-range side-scan sonar evidence, Geophysical Research Letters, 23 (24), 3535–3538, 1996.CrossRefGoogle Scholar
  16. Eide, L. I., Evidence of a topographically trapped vortex on the Norwegian continental shelf, Deep-Sea Research, 26 (6A), 601–621, 1979.CrossRefGoogle Scholar
  17. ETOP05, Digital relief of the surface of the earth, National Geophysical Data Center, Boulder, Colorado, 1986.Google Scholar
  18. Faugères, J.-C.; D. A. V. Stow, P. Imbert, and A. Viana, Seismic features diagnostic of contourite drifts, Marine Geology, 162 (1), 1–38, 1999.CrossRefGoogle Scholar
  19. Flügel, H., A new species Siboglinum (Pogonophora) from the North Atlantic and notes on Nereilinim murmanicum Ivanov, Sarsia, 75, 233–241, 1990.Google Scholar
  20. Fohrmann, H., Sedimente in bodengebundenen Dichtestrürnungen-numerische Fallstudien, Berichte Sonderforschungsberetck 313, Univ. Kiel, 66, 1–106, 1996.Google Scholar
  21. Fohrmann, H., J. O. Backhaus, F. Blaume, B. J. Haupt, J. Kämpf, K. Michels, J. Mienert, J. Posewang, W. Ritzrau, J. Rumohr, M. Weber, and R. Woodgate, Modem ocean current-controlled sediment transport in the Greenland-Iceland-Norwegian (GIN) Seas, this volume.Google Scholar
  22. Fohrmann, H., I. O. Backhaus, F. Blaume, and J. Rumohr, Sediments in bottom arrested gravity plumesnumerical case studies, Journal of PhysicalOceanography, 28 (11), 2250–2274, 1998.Google Scholar
  23. Goldschmidt, P., S. Pfirman, I. Wollenburg, and R. Henrich, Origin of sediment pellets from the Arctic seafloor: sea ice or icebergs?, Deep-Sea Research, 39 (Suppl. 2), 539–565, 1992.CrossRefGoogle Scholar
  24. Grønlie, G., and M. Talwani, Bathymetry of the Norwegian-Greenland Sea, Norsk Polarinst. Skrifter, 170, 3–24, 1979.Google Scholar
  25. Hald, M., T. Dokken, and S. Hagen, Palaeoceanography on the European arctic margin during the last deglaciation, in Late Quaternary palaeoceanography of the North Atlantic margins, edited by J.T. Andrews, W. E. N. Austin, H. Bergsten, and A. E. Jennings, pp. 275–287, The Geological Society, London, Special Publication 111, 1996.Google Scholar
  26. Harbitz, C. B., Model simulations of tsunamis generated by the Storegga Slides, Marine Geology, 105, 1–21, 1992.CrossRefGoogle Scholar
  27. Harris, P. T., and R. Coleman, Estimating global shelf sediment mobility due to swell waves, Marine Geology, 150 (1–4), 171–177, 1998.CrossRefGoogle Scholar
  28. Haupt, B. J., C. Schäfer-Neth, and K. Stattegger, Threedimensional numerical modeling of Late quarter Quaternary paleoceanography and sedimentation in the northern North Atlantic, Geologische Rundschau, 84, 137–150, 1995.CrossRefGoogle Scholar
  29. Hevrøy, K., C. Andersen, C. Andersson, E. Jansen, N. Koç, and E. Mjelde, Holocene variations of oceanic circulation in the Norwegian Sea with decadal to century scale resolution, Poster Sessions Abstracts, ICP 6, Lisbon, 125, 1998.Google Scholar
  30. Hjelstuen, B. O., O. Eldholm, and J. Skogseid, Vøring Plateau diapir fields and their structural and depositional settings, Marine Geology, 144 (1–3), 33–57, 1997.CrossRefGoogle Scholar
  31. Hjort, C., Glaciation, climate history, changing marine levels, and the evolution of the Northeast Water Polynia, Journal of Marine Systems, 10, 23–33, 1997.CrossRefGoogle Scholar
  32. Hogg, N. G., On the stratified Taylor column, Journal of Fluid Mechanics, 58, 517–537, 1973.CrossRefGoogle Scholar
  33. Hollender, F.-J., Untersuchung des ostgrönländischen Kontinentalrandes mit dem Weitwinkel-SeitensichtSonar GLORIA, Berichte Sonderforschungsbereicli 313, Univ. Kiel, 67, 1–124, 1996.Google Scholar
  34. Jensen, P., J. Rumohr, and G. Graf, Sedimentological and biological differences across a deep-sea ridge exposed to advection and accumulation of finegrained particles, Oceanologica Acta, 15 (3), 287–296, 1992.Google Scholar
  35. Johannessen, O. M., Brief overview of the physical oceanography, in The Nordic Seas, edited by B. G. Hurdle, pp. 103–127, Springer, Heidelberg, 1986.CrossRefGoogle Scholar
  36. Jungclaus, J. H., J. O. Backhaus, and H. Fohrmann, Outflow of dense water from the Storfjord in Svalbard: A numerical model study, Journal of Geophysical Research, 100 (CI2), 24719–24728, 1995.CrossRefGoogle Scholar
  37. Jünger, B., Tiefenwassererneuerung in der Grönlandsee während der letzten 340.000 Jahre (Deep water renewal in the Greenland Sea during the past 340,000 years), GEOMAR Report, 35, 1–103, 1994.Google Scholar
  38. Juterzenka, K. v., Untersuchungen zur Bedeutung von Schlangensternen (Echinodermata: Ophiuroidea) in Schelf-und Kontinentalhanggebieten des Europäischen Nordmeeres, Berichte Sonderforschungsbereich 313, Univ. Kiel, 57, 1–99, 1994.Google Scholar
  39. Kämpf, J., H. Fohrmann, and J. O. Backhaus, On the potential role of sediments in Arctic slope convection, Proceedings of the Conference on Polar Processes and Global Climate. Rosario, Orcas Island, USA, 3, 1997.Google Scholar
  40. Kowalik, Z., and A. Y. Proshutinsky, The Arctic Ocean tides, in The Polar Oceans and their role in shaping the global environment, edited by O. M. Johannessen, R. D. Muench, and J. E. Overland, Geophysical Monograph, 84,pp. 137–158, 1994.Google Scholar
  41. Kristoffersen, Y., M. Sand, B. Beskow, and Y. Ohta, Western Barents Sea-Bathymetry, Norsk Polarinstitutt, Oslo, 1989.Google Scholar
  42. Laberg, J. S., and T. O. Vorren, A Late Pleistocene submarine slide on the Bear Island Trough Mouth Fan, Geo-Marine Letters, 13, 227–234, 1993.CrossRefGoogle Scholar
  43. Laberg, J. S., and T. O. Vorren, Late Weichselian submarine debris flow deposits on the Bear Island Trough Mouth Fan, Marine Geology, 127, 45–72, 1995.CrossRefGoogle Scholar
  44. Laberg, J. S., T. O. Vorren, J. A. Dowdeswell, N. H. Kenyon, and J. Taylor, The Andøya Slide and the Andøya Canyon, north-eastern Norwegian-Greenland Sea, Marine Geology, 162, 259–275, 2000.CrossRefGoogle Scholar
  45. Larssen, B. B., A. Elverhøi, and P. Aagaard, Study of particulate material in sea ice in the Fram Straita contribution to paleoclimatic research, Polar Research, 5 (3), 313–315, 1987.CrossRefGoogle Scholar
  46. Lien, R., Iceberg scouring on the Norwegian continental shelf, IKU publication, 109, 1–147, 1983.Google Scholar
  47. Mayer, M., and D. Piepenburg, Epibenthic community patterns on the continental slope off East Greenland at 75° N, Marine Ecological Progress Series, 143, 151–164, 1996.CrossRefGoogle Scholar
  48. McPhee, E. E., A. R. M. Nowell, and R. W Sternberg, Boundary layer measurements and their implications for sediment transport on the eastern Norwegian Sea continental slope, Deep-Sea Research I, 45, 719–743, 1998.CrossRefGoogle Scholar
  49. Midttun, L., Formation of dense bottom water in the Barents Sea, Deep-Sea Research, 32 (10), 1233–1241, 1985.CrossRefGoogle Scholar
  50. Mienert, J., N. H. Kenyon, J. Thiede, and F. J. Hollender, Polar continental margins: studies off East Greenland, EOS, Transactions, American Geophysical Union, 74 (20), 225, 231, 234, 236, 1993.CrossRefGoogle Scholar
  51. Oehmig, R., Entrainment of planktonic foraminifera: effect of bulk density, Sedimentology, 40, 869–877, 1993.CrossRefGoogle Scholar
  52. Owens, W. B., and N. G. Hogg, Oceanic observations of stratified Taylor columns near a bump, Deep-Sea Research, 27, 1029–1049, 1980.CrossRefGoogle Scholar
  53. Perry, R. K., Bathymetry, in The Nordic Seas, edited by B. G. Hurdle, pp. 211–235, Springer, Heidelberg, 1986.CrossRefGoogle Scholar
  54. Perry, R. K., H. S. Fleming, N. Z. Cherkis, R. H. Feden, and P.R. Vogt, Bathymetry of the Norwegian-Greenland and western Barents Seas, Naval Research Laboratory (and Williams and Heintz Map Corp.), Washington, D.C., 1980.Google Scholar
  55. Pfannkuche, O., J. C. Duinker, G. Graf, H. Henrich, H. Thiel, and B. Zeitzschel, Meteor Reise 21. Nordatlantik 92, 16. März-31. August 1992, in Meteor Berichte, 93-4, 1-281, Universität Hamburg, 1993.Google Scholar
  56. Poulain, P.-M., A. Warn-Varnas, and P. P. Niiler, Near surface circulation of the Nordic Seas as measured by Lagrangian drifters, Journal of Geophysical Research, 101 (C8), 18237–18258, 1996.CrossRefGoogle Scholar
  57. Puig, P., and A. Palanques, Nepheloid structure and hydrographic control on the Barcelona continental margin, northwestern Mediterranean, Marine Geology, 149, 39–54, 1998.CrossRefGoogle Scholar
  58. Quadfasel, D., H. Kudrass, and A. Frische, Deep-water renewal by turbidity currents in the Sulu Sea, Nature, 348, 320–322, 1990a.CrossRefGoogle Scholar
  59. Quadfasel, D., B. Rudels, and K. Kurz, Outflow of dense water from a Svalbard fjord into the Fram Strait, Deep-Sea Research, 35 (7), 1143–1150, 1990b.CrossRefGoogle Scholar
  60. Quadfasel, D., B. Rudels, and S. Selchow, The Central Bank vortex in the Barents Sea: watermass transformation and circulation, ICES mar. Sci. Symp., 195, 40–51, 1992.Google Scholar
  61. Ramseier, R. O., C. Garrity, and T. Martin, An overview of sea-ice conditions in the Greenland Sea and the relationship of oceanic sedimentation to the ice regime, this volume.Google Scholar
  62. Ritzrau, W, and H. Fohrrnann, Field and numerical studies of near bed aggregate dynamics, in Computerized Modeling of Sedimentary Systems, edited by J. Harff, W Lemke, and K. Stattegger, pp. 183–207, Springer, Heidelberg, 1998.Google Scholar
  63. Ritzrau, W., G. Graf, A. Scheltz, and W Queisser, Bentho-pelagic coupling and carbon dynamics in the northern North Atlantic, this volume.Google Scholar
  64. Roberts, D. G., N. G. Hogg, D. G. Bishop, and C. G. Flewellen, Sediment distribution around moated seamounts in the Rockall Trough, Deep-Sea Research, 21, 175–184, 1974.Google Scholar
  65. Romero-Wetzel, M. B., Struktur und Bioturbation des Makrobenthos auf dem Vøring-Plateau (Norwegische See), Berichte Sonderforschungsbereich 313, Univ. Kiel, 13, 1–204, 1989.Google Scholar
  66. Romero-Wetzel, M. B., and S. A. Gerlach, Abundance, biomass, size-distribution and bioturbation potential of deep-sea macrozoobenthos on the Vøring Plateau (1200-1500 m, Norwegian Sea), Meeresforschung, 33, 247–265, 1991.Google Scholar
  67. Rudels, B., and D. Quadfasel, Convection and deep water formation in the Arctic Ocean-Greenland Sea system, Journal of Marine Systems, 2, 435–450, 1991.CrossRefGoogle Scholar
  68. Rumohr, J., and F. Blaume, Bericht tiber die 181. Fahrt des Forschungsschiffes „Poseidon“ ins nördliche EuropäischeNordmeer, Berichte Sonderforschungsbereich 313, Univ. Kiel, 63, 63–90, 1996a.Google Scholar
  69. Rurnohr, I., and F. Blaume, Bericht tiber die 196. Fahrt des Forschungsschiffes „Poseidon“ ins Europäische Nordmeer, Berichte Sonderforschungsbereicli 313, Univ. Kiel, 63, 39–62, 1996b.Google Scholar
  70. Rumohr, J., F. Blaume, and H. Fohrmann, Bericht tiber die 205. Fahrt des Forschungsschiffes „Poseidon“ ins Europaische Nordmeer 18.3.-13.4.95, Berichte Sonderforschungsbereich 313, Univ. Kiel, 63, 17–38, 1996.Google Scholar
  71. Rutgers van der Loeff, M. M., and B. P. Boudreau, The effect of resuspension on chemical exchanges at the sediment-water interface in the deep sea—A modeling and radiotracer approach, Journal of Marine Systems, 11, 305–342, 1997.CrossRefGoogle Scholar
  72. Sandwell, D. T., and W. H. F. Smith, Marine gravity anomaly from satellite altimetry, Geological Data Center Scripps Institution of Oceanography, La Jolla, CA., 1995.Google Scholar
  73. Sarnthein, M., E. Jansen, M. Weinelt, M. Arnold, J. C. Duplessy, H. Erlenkeuser, A. Flatøy, G. Johannessen, T. Johannessen, S. Jung, N. Koç, L. Labeyrie, M. Maslin, U. Pflaumann, and H. Schulz, Variations in Atlantic surface ocean paleoceanography, 50°-80° N: A time-slice record of the last 30,000 years, Paleoceanography, 10(6), 1063–1094, 1995.CrossRefGoogle Scholar
  74. Schäfer-Neth, C, Modellierung der Paläozeanographie des nördlichen Nordatlantiks zur letzten Maximalvereisung, Berichte Sonderforschungsbereich 313, Univ. Kiel, 51, 1–105, 1994.Google Scholar
  75. Schäfer-Neth, C., Changes in the seawater salinityoxygen isotope relation between last Glacial and present: Sediment core data and OGCM modeling, Paleoclimates, 2 (2–3), 101–131, 1998.Google Scholar
  76. Schauer, U., The release of brine-enriched shelf water from Storfjord into the Norwegian Sea, Journal of Geophysical Research, 100 (C8), 16015–16028, 1995.CrossRefGoogle Scholar
  77. Schauer, U., and E. Fahrbach, A dense bottom water plume in the western Barents Sea: downstream modification and interannual variability, Deep-Sea Research I, 46, 2095–2108, 1999.CrossRefGoogle Scholar
  78. Schneider, W., and G. Budeus, Summary of the Northeast Water Polynia formation and development (Greenland Sea), Journal of Marine Systems, 10, 107–122, 1997.CrossRefGoogle Scholar
  79. Smith, W.H.F., and D. T. Sandwell, 2’grid bathymetry of the world, http://www.brgmJr/sigandlcopyrigh.htm. 1997.Google Scholar
  80. Stein, R., S.-I. Nam, H. Grobe, and H. Hubberten, Late Quaternary glacial history and short-term ice-rafted debris fluctuations along the east Greenland continental margin, in Late Quaternary palaeoceanography of the North Atlantic margins, edited by J. T. Andrews, W. E. N. Austin, H. Bergsten, and A. E. Jennings, pp. 135–151, The Geological Society, London, Special Publication III, 1996.Google Scholar
  81. Talwani, M., and O. Eldholm, Evolution of the Norwegian-Greenland Sea, Geological Society of America Bulletin, 88, 969–999, 1977.CrossRefGoogle Scholar
  82. Voelker, A. H. J., M. Sarnthein, P. Grootes, H. Erlenkeuser, C. Laj, A. Mazaud, M.-J. Nadeau, and M. Schleicher, Correlation of marine 14C ages from the Nordic Seas with the GISP2 isotope record: Implications for radiocarbon calibration beyond 25 ka BP, Radiocarbon, 40 (1), 517–534, 1998.Google Scholar
  83. Vogt, P. R., Seafloor topography, sediments, and paleoenvironments, in The Nordic Seas, edited by B. G. Hurdle, pp. 237–412, Springer, Heidelberg, 1986.CrossRefGoogle Scholar
  84. Vogt, P. R., G. Cherkashev, G. Ginsburg, G. Ivanov, A. Milkov, K. Crane, A. Lein, E. Sundvor, N. Pimenov, and A. Egorov, Haakon Mosby mud volcano provides unusual example of venting, EOS, Transactions, American Geophysical Union, 78 (48), 549, 556-557,1997.CrossRefGoogle Scholar
  85. Vorren, T. O., J. S. Laberg, F. Blaume, J. A. Dowdeswell, N. H. Kenyon, J. Mienert, J. Rumohr, and F. Werner, The Norwegian-Greenland Sea continental margins: morphology and Late Quaternary sedimentary processes and environment, Quaternary Science Reviews, 17 (1-3), 273–302, 1998.CrossRefGoogle Scholar
  86. Weber, M. A., Sedimentologische Untersuchungen eines holozänen Hochakkumulationsgebietes auf dem nördlichen Vøring-Plateau-Escarpment (Norwegische See) zur Frage des Sedimenttransportes in der Tiefsee, unpubl. Diplom-thesis, Univ. Kiel, 1995.Google Scholar
  87. Wollenburg, I., Sedimenttransport durch das arktische Meereis: Die rezente lithogene und biogene Mate rialfracht, Berichte zur Polarforschung, 127, 1–159, Alfred-Wegener-Institut, Bremerhaven, 1993.Google Scholar
  88. Woodgate, R., and E. Fahrbach, Benthic storms in the Greenland Sea, Deep-Sea Research I, 46 (12), 2109–2127, 1999.CrossRefGoogle Scholar
  89. Yoon, S. H., S. K. Chough, J. Thiede, and F. Werner, Late Pleistocene sedimentation on the Norwegian continental slope between 67° and 71° N, Marine Geology, 99, 187–207, 1991.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jan Rumohr
    • 1
  • Frank Blaume
    • 2
  • Helmut Erlenkeuser
    • 3
  • Hermann Fohrmann
    • 2
  • Franz-Josef Hollender
    • 2
  • Jürgen Mienert
    • 4
  • Christian Schäfer-Neth
    • 2
  1. 1.GEOMAR, Research Center for Marine GeosciencesKiel UniversityKielGermany
  2. 2.SFB 313Kiel UniversityKielGermany
  3. 3.Leibniz LaboratoryKiel UniversityKielGermany
  4. 4.Institute of GeologyUniversity of TromsøTromsøNorway

Personalised recommendations