Modelling and Simulation of Phase Transition in Shape Memory Metals

  • Ingo Müller
Conference paper


The richness of phenomena observed in the load-deformation-temperature behaviour of shape memory alloys has provided a challenge for the physicist and mathematician as well as the engineer.


Shape Memory Alloy Phase Fraction Helmholtz Free Energy Shape Recovery Residual Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perkins, J. (ed.), Shape Memory Effect in Alloys. Plenum Press New York, London 1976.Google Scholar
  2. 2.
    Delaey, L., Chandrasekharan, L. (eds.), Proc. Int. Conf. on Martensitic Transformation, Leuven (Belgium) 1982. J. de Physique 43 (1982).Google Scholar
  3. 3.
    Tamura, I. (ed.), Proc. Int. Conf. on Martensitic Transformation, Nara (Japan) 1986. The Japan Institute of Metals.Google Scholar
  4. 4.
    Hornbogen, E., Jost, N. (eds.), The Martensitic Transformation in Science and Technology. DGM Informationsgesellschaft Oberursel (Germany) (1989).Google Scholar
  5. 5.
    Liu, C.T., Kunsmann, H., Otsuka, K., Wuttig, M., Shape Memory Materials and Phenomena — Fundamental Aspects and Applications. Materials Research Society. Fall Meeting Boston (USA) 1991. MRS Symp. Proc. 246.Google Scholar
  6. 6.
    Perkins, J. (ed.), Proc. Int. Conf. on Martensitic Transformation, Monterey (USA) 1992.Google Scholar
  7. 7.
    Chu, Yongi, Tu, Hailing, Shape Memory Materials ’94. Proc. Int. Symp. on Shape Memory Materials, Beijing (P.R. China) (1994).Google Scholar
  8. 8.
    Ehrenstein, H., Formerinnerungsvermögen in NiTi. Dissertation TU Berlin (1985).Google Scholar
  9. 9.
    Achenbach, M., Ein Modell zur Simulation des Last-Verformungs-Temperatur Verhaltens von Legierungen mit Formerinnerungsvermögen. Dissertation TU Berlin (1986).Google Scholar
  10. 10.
    Huo, Y., On the Thermodynamics of Pseudoelasticity. Dissertation TU Berlin (1992).Google Scholar
  11. 11.
    Xu, H., Experimentelle und theoretische Untersuchung des Hystereseverhaltens in Formgedächtnislegierungen. Dissertation TU Berlin (1992).Google Scholar
  12. 12.
    Seelecke, S., Adaptive Strukturen mit Formgedächtnisaktuatoren — Modellierung und Simulation. Habilitation Thesis, TU Berlin (1999).Google Scholar
  13. 13.
    da Silva, E., Zur Kalorimetrie von Gedächtnislegierungen und zu ihrer Anwendung als elektrisch aktivierte Aktuatoren. Dissertation, TU Berlin (2000).Google Scholar
  14. 14.
    Achenbach, M., Müller, I., Simulation of Material Behaviour of Alloys with Shape Memory. Arch. Mech. 37, 6 (1985)Google Scholar
  15. 15.
    Achenbach, M., A Model for an Alloy with Shape Memory, Int. J. Plasticity 5 (1989).Google Scholar
  16. 16.
    Müller, I., Xu, H., On the Pseudoelastic Hysteresis. Acta Metallurgica et Materialia 39 (1991).Google Scholar
  17. 17.
    Huo, Y., Müller, I., Thermodynamics of Pseudoelasticity — A Graphical Approach. Pitman Research Notes in Mathematics 286 (1993).Google Scholar
  18. 18.
    Fu , S., Huo, Y., Müller, I., Thermodynamics of Pseudoelasticity — An Analytical Approach. Acta Mechanica 99 (1993).Google Scholar
  19. 19.
    Huo, Y., Müller, I., Non-Equilibrium Thermodynamics of Pseudoelasticity. Cont. Mech. Thermodyn. 5 (1993).Google Scholar
  20. 20.
    Papenfuss, N. Seelecke, S., Simulation and Control of SMA Actuators. Proc. SPIE’s 6th Ann. Int. Symp. Smart Struct. Mat., Vol. 3667, Newport Beach, USA. 15 March 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Ingo Müller
    • 1
  1. 1.Technische Universität BerlinBerlinGermany

Personalised recommendations