Modification of Oilseed Quality by Genetic Transformation

  • Steffen Weber
  • Karim Zarhloul
  • Wolfgang Friedt
Part of the Progress in Botany book series (BOTANY, volume 62)


Oil crops, like oilseed rape and sunflower, are important sources of energy, both for human consumption and for feeding livestock. They are also raw materials for a wide range of industrial products for many non-edible purposes. Modification of the fatty-acid composition to make oil crops more competitive in various segments of the food and industrial oil markets has recently been an important objective of molecular genetics and plant breeding. Consequently, one of the most important objectives of oilseed breeding is the genetic modification of seed storage oil by maximizing the proportion of specific or functional fatty acids in order to obtain tailor-made raw materials suitable for various industrial purposes. However, the quality of vegetable food products has acquired an increased relevance for human nutrition with the advent of so-called functional food. Regarding the specific properties of such nutritives, genetic engineering has the ability to adapt plant storage lipids to meet specific nutritional and even therapeutic requirements.


Somatic Embryogenesis Genetic Transformation Oilseed Rape Erucic Acid Helianthus Annuus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alibert B, Lucas O, Khallerhof J, Souvré A, Alibert G (1998) Genetic transformation of sunflower (Helianthus annuus L.) by Agrobacterium tumefaciens infection of pectolyase treated expiants. In: Bervillé A, Tersac M (eds) Proceedings of 4th European Conference on Sunflower Biotechnology, 20–23 Oct, INRA, Montpellier, France. p 64Google Scholar
  2. Alibert G, Aslane-Chanabé C, Burrus M (1994) Sunflower tissue and cell cultures and their use in biotechnology. Plant Physiol Biochem 32: 31–44Google Scholar
  3. Anonymous (1991) Pioneer hi-bred halves the time for achieving stable sunflower transformation. Biotechnol News 11:3–4Google Scholar
  4. Anonymous (1999) Scholar
  5. Babic V, Dalta RS, Scoles GJ, Keller WA (1998) Development of efficient Agrobacterium-mediated transformation system for Brassica carinata. Plant Cell Rep 17:183–188CrossRefGoogle Scholar
  6. Barro F, Martin A (1999) Response of different genotypes of Brassica carinata to microspore culture. Plant Breed 118:79–81CrossRefGoogle Scholar
  7. Berrios EF, Gentzbittel L, Alibert G, Griveau Y, Berville A, Sarrafi A (1999) Genetic control of in vitro-organogenesis in recombinant inbred lines of sunflower (Helianthus annuus L.). Plant Breed 118:359–361CrossRefGoogle Scholar
  8. Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–271PubMedCrossRefGoogle Scholar
  9. Bhalla PL, Smith N (1998) Agrobacterium tumefaciens-mediated transformation of cauliflower, Brassica oleracea var botrytis. Mol Breed 4:531–541CrossRefGoogle Scholar
  10. Bidney D (1990) Expression of β-glucuronidase in sunflower apical meristems following microprojectile bombardment. In: Nijkamp HJJ, van der Plas LHW, van Aartrijk J (eds) Proceedings of 7th International Congress on Plant Tissue and Cell Cultures. Kluwer, Dordrecht, p 48Google Scholar
  11. Bidney D, Scelonge CJ, Malone-Schoneberg JB (1992) Transformed progeny can be recovered from chimeric plants regenerated from Agrobacterium tumefaciens treated embryonic axes of sunflower. In: Bonari E, Galoppini C, Gambogi P, Panattoni A, Trimarchi G (eds) Proceedings of the 13th International Sunflower Conference, Pisa, Italy, vol 2, University of Pisa, Pisa, pp 1408–1411Google Scholar
  12. Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326PubMedCrossRefGoogle Scholar
  13. Broun P, Somerville C (1997) Accumulation of ricinoleic, lesquerolic and densipolic acid in seeds of transgenic arabidopsis plants that express a fatty acyl hydrolase cDNA from castor bean. Plant Physiol 113:933–942PubMedCrossRefGoogle Scholar
  14. Burnett L, Amoldo M, Yarrow S, Huang B (1994) Enhancement of shoot regeneration from cotyledon expiants of Brassica rapa ssp. oleifera through pre-treatment with auxin and cytokinin and used of ethylene inhibitors. Plant Cell Tissue Organ Cult 37:253–256Google Scholar
  15. Burrus M, Bronner R, Hahne G (1993) Shoot regeneration from sunflower: a histological study. Biotechnology 7:126–128Google Scholar
  16. Burrus MJ, Molinier C, Himber C, Hunold R, Bronner R, Rousselin P, Hahne G (1996) Agrobacteriu m -mediated transformation of sunflower (Helianthus annuus L.) shoot apices: transformation patterns. Mol Breed 2:329–338CrossRefGoogle Scholar
  17. Cahoon EB, Carlson TJ, Ripp KG, Schweiger BJ, Cook GA, Hall SE, Kinney AJ (1999) Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc Natl Acad Sci USA 96:12935–12940PubMedCrossRefGoogle Scholar
  18. Cao J, Tang JD, Strizhov N, Shelton AM, Earle ED (1999) Transgenic broccoli with high level of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Mol Breed 5:131–141CrossRefGoogle Scholar
  19. Cartea ME, Migdal M, Galle AM, Pelletier G, Guerche P (1998) Comparison of sense and anti-sense methodologies for modifying the fatty acid composition of Arabidopsis thaliana oilseed. Plant Science 136:181–194CrossRefGoogle Scholar
  20. Charest PJ, Holbrook LA, Gabard J, Iyer VN, Miki BL (1988) Agrobacterium mediated transformation of thin cell layer expiants from Brassica napus. Theor Appl Genet 75:438–445CrossRefGoogle Scholar
  21. Charest PJ, Iyer VN, Brian LM (1989) Virulence of Agrobacterium tumefaciens strains with Brassica napus and Brassica juncea. Plant Cell Rep 8:303–306CrossRefGoogle Scholar
  22. Charriere F, Hahne G (1998) Induction of embryogenesis versus caulogenesis on in vitro cultured sunflower (Helianthus annuus L.) immature zygotic embryos: role of plant growth regulators. Plant Sci 137:63–71CrossRefGoogle Scholar
  23. Chen JL, Beversdorf WD (1994) A combined use of microprojectile bombardment and DNA imbibition enhances transformation frequency in canola (Brassica napus L.). Theor Appl Genet 88:187–192Google Scholar
  24. Cho MJ, Jiang W, Lemaux PG (1999) High-frequency transformation of oat microprojectile bombardment of seed-derived highly regenerative cultures. Plant Sci 148:9–17CrossRefGoogle Scholar
  25. Christey MC, Sinclair BK, Braun RH (1997) Regeneration of transgenic vegetable Brassicas (Brassica olerácea and B. campestris) via Ri-mediated transformation. Plant Cell Rep 16:587–593CrossRefGoogle Scholar
  26. Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in Eubacteria. J Bacteriol 179: 3085–3094PubMedGoogle Scholar
  27. Christou P (1995) Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilising particle bombardment. Euphytica 85:13–27CrossRefGoogle Scholar
  28. Christou P (1997) Rice transformation: bombardment. Plant Mol Biol 35:197–203PubMedCrossRefGoogle Scholar
  29. Christou P, McCabe DE (1992) Prediction of germ-line transformation events in chimeric RO transgenic soybean plantlets using tissue-specific expression patterns. Plant J 2:283–290CrossRefGoogle Scholar
  30. Coughlan S, Hastings C, Hazebroek J, Scelonge C (1999) Production of transgenic sunflower with altered fatty acid profiles. Symposium of the National Plant Lipid Cooperative (NPLC), June 9–13, Fallen Leaf Lake, CA Google Scholar
  31. Damgaard O, Jensen LH, Rasmussen OS (1997) Agrobacterium tumefaciens-mediated transformation of Brassica napus winter cultivars. Transgenic Res 6:279–288CrossRefGoogle Scholar
  32. De Block M (1993) The cell biology of plant transformation: current state, problems, prospects and the implications for the plant breeding. Euphytica 71:1–14CrossRefGoogle Scholar
  33. De Block M, De Brouwer D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in transgenic plants. Plant Physiol 91:694–701PubMedCrossRefGoogle Scholar
  34. De la Riva GA, González-Cabrera J, Vázquez-Padrón R, Ayra-Pardo C (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. Electron J Biotechnol 1. http://www.ejb.orgGoogle Scholar
  35. De Ropp RS (1946) The isolation and behaviour of bacteria-free crown-gall tissue from primary galls of Helianthus annuus. Phytopathology 37:201–206Google Scholar
  36. Deglene L, Lesignes P, Alibert G, Sarrafi A (1997) Genetic control of organogenesis in cotyledons of sunflower (Helianthus annuus L.). Plant Cell Tissue Organ Cult 48:127–130CrossRefGoogle Scholar
  37. Ding LC, Hu CY, Yeh KW, Wang PJ (1998) Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep 17:854–860CrossRefGoogle Scholar
  38. Dunwell JM (1998) Novel food products from genetically modified crop plants: methods and future prospects. Food Sci Technol 33:205–213Google Scholar
  39. Elliot AR, Campbell JA, Dugdale B, Brettell RIS, Grof CPL (1999) Green-fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells. Plant Cell Rep 18:707–714CrossRefGoogle Scholar
  40. Everett NP, Robinson KEP, Mascarenhas D (1987) Genetic engineering of sunflower (Helianthus annuus L.). Biotechnology 5:1201–1204CrossRefGoogle Scholar
  41. Fiore MC, Trabace T, Sunseri F (1997) High frequency of plant regeneration in sunflower from cotelydons via somatic embryogenesis. Plant Cell Rep 16:295–298Google Scholar
  42. Fischer C, Klethi P, Hahne G (1992) Protoplasts from cotyledon, hypocotyl of sunflower (Helianthus annuus L.): shoot regeneration and seed production. Plant Cell Rep 11:632–636CrossRefGoogle Scholar
  43. Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Santord JC (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 9:189–194Google Scholar
  44. Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Santord JC (1992) Virus resistant papaya plants derived from tissues bombardment with the coat protein gene of papaya ring spot virus. Biotechnology 10:1466–1472CrossRefGoogle Scholar
  45. Friedt W (1992) Present state and future prospects of biotechnology in sunflower breeding In: Seiler G (ed) Field crops research (vol 30). Elsevier, Amsterdam, pp 425–442Google Scholar
  46. Friedt W, Lühs W (1998) Recent developments and perspectives of industrial rapeseed breeding. Fett/Lipid 100:219–226CrossRefGoogle Scholar
  47. Friedt W, Lühs W (1999) Breeding of rapeseed (Brassica napus) for modified seed quality: synergy of conventional and modern approaches. In: Wratten N, Salisbury BA (eds) Proceedings of the 10th International Rapeseed Congress, 26–29 Sept, GCICRC, Canberra, Australia, p 76Google Scholar
  48. Friedt W, Nurhidayah T, Röcher T, Köhler H, Bergmann R, Horn R (1997) Haploid production and application of molecular methods in sunflower (Helianthus annuus L.). In: Jain SM (eds) In vitro haploid production in higher plants. Kluwer, Amsterdam: pp 17–35CrossRefGoogle Scholar
  49. Froman B, Edwards P, Byrne J, Colburn S, Dehesh K (1999) Molecular, biochemical and structural analysis of transgenic Brassica seeds producing significant levels of medium chain fatty acids. Symposium of the National Plant Lipid Cooperative (NPLC), June 9–13, Fallen Leaf Lake Calif. Google Scholar
  50. Fry J, Barnason A, Horsch RB (1987) Transformation of Brassica napus with Agrobacterium based vectors. Plant Cell Rep 6:321–325CrossRefGoogle Scholar
  51. Fukuoka H, Ogawa T, Matsuoka M, Ohkawa Y, Yano H (1998) Direct gene delivery into isolated microspores of rapeseed (Brassica napus L.) and the production of fertile transgenic plants. Plant Cell Rep 17:323–328CrossRefGoogle Scholar
  52. Furth PA (1997) Gene transfer by biolistic process. Mol Biotechnol 7:139–143PubMedCrossRefGoogle Scholar
  53. Goldsborough PB, Gelvin SB, Larkinsba (1986) Expression of maize gene in transformed sunflower cells. Mol Gen Genet 202:374–381CrossRefGoogle Scholar
  54. Grayburn WS, Vick BA (1995) Transformation of sunflower (Helianthus annuus L.) following wounding with glass beads. Plant Cell Rep 14:285–289CrossRefGoogle Scholar
  55. Gurel E, Kazan K (1999) Development of an efficient plant regeneration system in sunflower (Helianthus annuus L.). Turk J Bot 22:381–387Google Scholar
  56. Hahne G (1994) Sunflower. In: Wang K, Herrera-Estrella A, Van Montagu M (eds) Transformation of plants and soil microorganism. Cambridge University, Cambridge, pp 137–145Google Scholar
  57. Hahne G (2000) Sunflower. In: Hui YH, Khatchtourians GG, McHughen A, Nip WK, R Scorza (eds) Handbook of transgenic plants. Dekker, New York (in press)Google Scholar
  58. Harwood WA, Bean SJ, Chen DF, Mullineaux PM, Snape JW (1995) Transformation studies in Hordeum vulgare using a highly regenerable microspore system. Euphytica 85:113–118CrossRefGoogle Scholar
  59. Hawkins DJ, Kridl JC (1998) Characterisation of acyl-ACP thioesterases of mangosteen (Garcinia manostana) seed and high levels of stearate production in transgenic canola. Plant J 13:743–752PubMedCrossRefGoogle Scholar
  60. Heatley ME, Smith RH (1996) Whole plant regeneration from the shoot apex of Arachis hypogaea L. In Vitro Cell Dev Biol Plant 32:115–118Google Scholar
  61. Helmer G, Casadaban M, Bevan M, Kayes L, Chilton M (1984) A new chimeric gene as a marker for plant transformation: the expression of Escherichia coli ß-galactosidase in sunflower and tobacco cells. Biotechnology 2:520–527CrossRefGoogle Scholar
  62. Henzi MX, Christey MC, McNeil DL, Davies KM (1999) Agrobacterim rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica) with an anti-sense 1-aminocyclopropane-1-carboxylic acid oxidase gene. Plant Sci 143:55–62CrossRefGoogle Scholar
  63. Hitz WD, Yadav NS, Reiter RS, Mauvais CJ, Kinney AJ (1995) Reducing polyunsaturation in oils of transgenic canola and soybean. In: Kader JC, Mazliak P (eds) Plant lipid metabolism. Kluwer, Amsterdam, pp 506–508CrossRefGoogle Scholar
  64. Holbrook LA, Miki BL (1985) Brassica crown gall tumorigenesis and in vitro transformed tissue. Plant Cell Rep 4:329–332CrossRefGoogle Scholar
  65. Horsch RB, Fry JE, Hoffman NL, Eichholz D, Rogers SG, Fraley RT (1985) A simple method for transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  66. Huang YS, Liu JW, Mukerji P, Knutzon D (1999) Characterisation of genetically-transformed canola seed oil as an economical source of γ-linolenic acid. Symposium of the National Plant Lipid Cooperative (NPLC), June 9–13, Fallen Leaf Lake, Calif. Google Scholar
  67. Hunold R, Bronner R, Hahne G (1993) GUS expression in sunflower following microprojectile bombardment. Biotechnology 7:91–95Google Scholar
  68. Hunold R, Burrus M, Bronner R, Duret JP, Hahne G (1995) Transient gene expression in sunflower (Helianthus annuus L.) following microprojectile bombardment. Plant Sci 105:95–109CrossRefGoogle Scholar
  69. Ivanov P, Encheva J, Ivanova I (1998) A protocol to avoid precocious flowering of sunflower plantlets in vitro. Plant Breed 117:582–584CrossRefGoogle Scholar
  70. Jaehne A, Becker D, Brettschneider R, Loerz H (1994) Regeneration of transgenic mi-crospore-derived fertile barley. Theor Appl Genet 89:525–533Google Scholar
  71. Jaehne A, Becker D, Loerz H (1995) Genetic engineering of cereal crop plants: a review. Euphytica 85:35–44CrossRefGoogle Scholar
  72. James C (1998) Global status of transgenic crops in 1997. ISAAA brief No 5, International Service for the Acquisition of Agri-biotech Applications, Ithaca, p 31Google Scholar
  73. James C, Krattiger AF (1996) Global Review of the Field Testing and Commercialisation of Transgenic Plants, 1986 to 1995: The First Decade of Crop Biotechnology. ISAAA brief No 1, International Service for the Acquisition of Agri-biotech Applications, Ithaca, p 31Google Scholar
  74. Jeannin G, Bronner R, Hahne G (1993) Early cytological discrimination between organogenesis and somatic embryogenesis induced on immature zygotic embryos of sunflower (Helianthus annuus L.). Biotechnology 7:96–99Google Scholar
  75. Jeannin G, Bronner R, Hahne G (1995) Somatic embryogenesis and organogenesis induced on the immature zygotic embryo of sunflower (Helianthus annuus L.) cultivated in vitro: role of the sugar. Plant Cell Rep 15:200–204Google Scholar
  76. Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioseste-rase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7:359–371PubMedGoogle Scholar
  77. Jun IJ, Kwon SY, Paek KY, Paek KH (1995) Agrobacterium-mediated transformation and regeneration of fertile transgenic plants of Chinese cabbage (Brassica campestris ssp. pekinensis cv “spring flavor”). Plant Cell Rep 14:620–625CrossRefGoogle Scholar
  78. Kar S, Johnson TM, Nayak P, Sen SK (1996) Efficient transgenic plant regeneration through Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.). Plant Cell Rep 16:32–37CrossRefGoogle Scholar
  79. Kinney JK (1998) Plants as industrial factories new oils from genetically engineered soybeans. Fett/Lipid 100:173–176CrossRefGoogle Scholar
  80. Klein TM, Zhang W (1994) Progress in the genetic transformation of recalcitrant crop species. Ann Appl Biol 39:35–44Google Scholar
  81. Klein TM, Arentzen R, Lewis PA, Fitzpatrick-McElligott S (1992) Transformation of microbes, plants and animals by particle bombardment. Biotechnology 10:286–291PubMedCrossRefGoogle Scholar
  82. Knittel N, Gruber V, Hahne G, Lenee P (1994) Transformation of sunflower (Helianthus annuus L.): a reliable protocol. Plant Cell Rep 14:81–86Google Scholar
  83. Knutzon DS, Thompson GA, Radke SE, Johnson WB, Knauf VC, Kridl JC (1992) Modification of Brassica seed oil by anti-sense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci USA 89:2624–2628PubMedCrossRefGoogle Scholar
  84. Knutzon DS, Hayes TR, Wyrick A, Xiong H, Davies HM, Voelker TA (1999) Lysophos-phatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapessed oil and can increase total laurate levels. Plant Physiol 120:739–746PubMedCrossRefGoogle Scholar
  85. Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organisation in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci USA 95:7203–7208PubMedCrossRefGoogle Scholar
  86. Kost B, Leduc N, Sautter C, Potrykus I, Neuhaus G (1996) Transient marker gene expression during zygotic in vitro embryogenesis of Brassica juncea (Indian mustard) following particle bombardment. Planta 198:211–220CrossRefGoogle Scholar
  87. Krasnyanski S, Menczel L (1993) Somatic embryogenesis and plant regeneration from hypocotyl protoplasts of sunflower (Helianthus annuus L.). Plant Cell Rep 12:260–263CrossRefGoogle Scholar
  88. Kräuter R, Steinmetz A, Friedt W (1991) Efficient interspecific hybridisation in the genus Helianthus via “embryo rescue” and characterisation of the hybrids. Theor Appl Genet 82:521–525CrossRefGoogle Scholar
  89. Kuvshinov V, Koivu K, Kanerva A, Pehu E (1999) Agrobacterium tumefaciens-mediated transformation of greenhouse-grown Brassica rapa ssp. oleífera. Plant Cell Rep 18:773–777CrossRefGoogle Scholar
  90. Laparra H, Burrus M, Hunold R, Damm B, Bravo-Angel A-M, Bronner R, Hahne G (1995) Expression of foreign genes in sunflower (Helianthus annuus L.) — evaluation of three gene transfer methods. Euphytica 85:63–74CrossRefGoogle Scholar
  91. Lassner MW, Levering CK, Davies HM, Knutzon DS (1995) Lysophosphatidic acid acyltransferase from meadowfoam mediated insertion of erucic acid at the sn-2 position of triacylglycerol in transgenic rapeseed oil. Plant Physiol 109:1389–1394PubMedCrossRefGoogle Scholar
  92. Lim HAT, You YS, Park EJ, Song YN, Park HK (1998) High plant regeneration, genetic stability of régénérants, and genetic transformation of herbicide resistance gene (bar) in Chinese cabbage (Brassica campestris ssp. pekinensis). Brassica 97:199–208Google Scholar
  93. Ling H-Q, Krieseleit D, Ganal MW (1998) Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Cell Rep 17:843–847CrossRefGoogle Scholar
  94. Luthra R, Varsha, Dubey RK, Srivastava AK, Kumar S (1997) Microprojectile mediated plant transformation: a bibliographic search. Euphytica 95:269–294CrossRefGoogle Scholar
  95. Malone-Schoeneberg RS, Bidney D, Scelonge C, Burrus M, Martich J (1991) Recovery of stable transformants from Agrobacterium tumefaciens treated split shoot axes. In Vitro Cell Dev Biol 27:152Google Scholar
  96. Martínez de Ilárduya O, Mekhedov S, Ohlrogge J (1999) A survey of genes for plant glycerolipid biosynthesis, Google Scholar
  97. Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107:679–685PubMedGoogle Scholar
  98. Matzke MA, Susani M, Binns AN, Lewis ED, Rubenstein I, Matzke AJM (1984) Transcription of a zein gene introduced into sunflower using Ti plasmid vector. EMBO J 3:1525–1531PubMedGoogle Scholar
  99. Mekhedov S, Martínez de Ilárduya O, Ohlrogge I (1999) Towards the functional catalogue of plant genes: a survey of genes for plant glycerolipid biosynthesis. Symposium of the National Plant Lipid Cooperative (NPLC), June 9–13, Fallen Leaf Lake, CA. Google Scholar
  100. Metz PLJ, Nap JP (1997) A transgene-centred approach to the biosafety of transgenic plants: overview of selection and reporter genes. Acta Bot Neerl 46:25–50Google Scholar
  101. Molinier J, Hahne G (1998) Modification of seed oil composition in sunflower by genetic engineering. In: Bervillé A, Tersac M (eds) Proceedings of 4th European Conference on Sunflower Biotechnology, 20–23 Oct, INRA, Montpellier, France, p 44Google Scholar
  102. Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8, 238–242CrossRefGoogle Scholar
  103. Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumine gene. Proc Natl Acad Sci USA 94:8393–8398PubMedCrossRefGoogle Scholar
  104. Müller A, Schuster C, Iser M, Fürst S, Jach M, Hess D (1998) Regeneration from different explants of sunflower (Helianthus annuus L.) and first transformation experiments. In: Bervillé A, Tersac M (eds) Proceedings of 4th European Conference on Sunflower Biotechnology, 20–23 Oct. INRA, Montpellier, France, p 63Google Scholar
  105. Murai N, Sutton D, Murray M, Slighton J, Merlo D, Reichert N, Sengupta-Gopalan C, Sock C, Barker R, Kemp J, Hall T (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor inducing plasmid vectors. Science 222:476–481PubMedCrossRefGoogle Scholar
  106. Murphy DJ (1996) Engineering oil production in rapeseed and other oil crops. Trends Biotechnol 14:206–213CrossRefGoogle Scholar
  107. Murphy DJ (1999) Production of novel oils in plants. Curr Opin Biotechnol 10:175–180PubMedCrossRefGoogle Scholar
  108. Nestares G, Zorzoli R, Mroginski L, Picard L (1998) Cytoplasmic effects on the regeneration ability of sunflower. Plant Breed 117:188–190CrossRefGoogle Scholar
  109. Nuhridayah T, Horn R, Röcher T, Friedt W (1997) High regeneration rates in anther culture of interspecific sunflower hybrids. Plant Cell Rep 16:167–173Google Scholar
  110. Ohlrogge JB (1994) Design of new plant products: engineering of fatty acid metabolism. Plant Physiol 104:821–826PubMedGoogle Scholar
  111. Ohlrogge JB, Browse J, Somerville CR (1991) The genetics of plant lipids. Biochim Biophys Acta 1082:1–26PubMedCrossRefGoogle Scholar
  112. Ono Y, Takahata Y, Kaizuma N (1994) Effect of genotype on shoot regeneration from cotyledonary expiants of rapeseed (Brassica napus L.). Plant Cell Rep 14:13–17CrossRefGoogle Scholar
  113. Ooms G, Bains A, Burrell M, Karp A, Wilcow E (1985) Genetic manipulation in cultivars of oilseed rape (Brassica napus) using Agrobacterium. Theor Appl Genet 71:325–329Google Scholar
  114. Parihar DS, Maheshwari SC, Khurana P (1995) High frequency somatic embryogenesis and plantlet regeneration from hypocotyl protoplast cultures of Brassica napus. Plant Cell Tissue Organ Cult 42:113–115CrossRefGoogle Scholar
  115. Paul S, Sikdar SR (1999) Expression of nptII marker and gus genes and their inheritance in subsequent generations of transgenic Brassica developed through Agrobacterium-mediated gene transfer. Curr Sci 76:1569–1573Google Scholar
  116. Pawlowski WP, Somers DA (1996) Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol Biotechnol 6:17–30PubMedCrossRefGoogle Scholar
  117. Pechan PM (1989) Successful co-cultivation of Brassica napus microspores and proem-bryos with Agrobacterium. Plant Cell Rep 8:387–390CrossRefGoogle Scholar
  118. Peerbolte R, Dek GJ, Remijn E, De Beule P (1995) Transgenic sunflowers from the lab into the field. In: Friedt W, Horn R (eds) Proceedings of the third European Conference on Sunflower Biotechnology, 30 Oct-2 Nov, Bad Münster am Stein, Germany. Justus-Liebig-University of Giessen, Germany, p 25Google Scholar
  119. Pollard MR, Anderson L, Fan C, Hawkins DJ, Davies HM (1991) A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica. Arch Biochem Biophys 284: 306–312PubMedCrossRefGoogle Scholar
  120. Poulsen GB (1996) Genetic transformation of Brassica. Plant Breed 115:209–225CrossRefGoogle Scholar
  121. Prieto-Dapena P, Almoguera C, Rojas A, Jordano J (1999) Seed specific expression patterns and regulation by ABI3 of an unusual late embryogenesis abundant gene in sunflower. Plant Mol Biol 39:615–627PubMedCrossRefGoogle Scholar
  122. Pua EC, Chi GL (1993) De novo shoot morphogenesis and plant growth of mustard (Brassica juncea) in vitro in relation to ethylene. Physiol Plant 88:467–474CrossRefGoogle Scholar
  123. Pua EC, Lee JEE (1995) Enhanced de novo shoot morphogenesis in vitro by expression of antisense 1-aminocyclopropane-1-carboxylate oxidase gene in transgenic mustard plants. Planta 96:69–76Google Scholar
  124. Pua EC, Sim GE, Chi GL, Kong LF (1996) Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyl expiants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey) in vitro. Plant Cell Rep 15:685–690CrossRefGoogle Scholar
  125. Radke SE, Andrews BM, Moloney MM, Crouch ML, Kridl JC, Knauf VC (1988) Transformation of Brassica napus L. using Agrobacterium tumefaciens: developmentally regulated expression of reintroduced napin gene. Theor Appl Genet 75:685–694CrossRefGoogle Scholar
  126. Rieseberg LH, Arias DM, Ungerer MC, Lindner CR, Sinervo B (1996) The effects of mating design on introgression between chromosomally divergent sunflower species. Theor Appl Genet 93:633–644CrossRefGoogle Scholar
  127. Sankara Rao K, Rohini VK (1999) Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.): a simple protocol. Ann Bot 83:347–354CrossRefGoogle Scholar
  128. Sarrafi A, Roustan JP, Fallot J, Alibert G (1996) Genetic analysis of organogenesis in the cotelydons of sunflower (Helianthus annuus L.). Theor Appl Genet 92:225–229CrossRefGoogle Scholar
  129. Schaeffer HJ, Forsthoefel NR, Cushman JC (1995) Identification of enhancer and silencer regions involved in salt-responsive expression of crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Mol Biol 28:205–218PubMedCrossRefGoogle Scholar
  130. Schaffert E, Wallbraun M, Möllers C (1996) A culture medium for improved Agrobacterium-mediated transformation of Brassica napus L. Proceedings of the Eucarpia Symposium on the Breeding of Oil and Protein Crops, 5–8 Aug, Zaporozhye, Ukraine, EUCARPIA, pp 227–232Google Scholar
  131. Schrammeijer B, Sijmons PC, Van den Elzen PJM, Hoekema A (1990) Meristem transformation of sunflower via Agrobacterium. Plant Cell Rep 9:55–60CrossRefGoogle Scholar
  132. Scorza R, Cordts JM, Ramming DW, Emershad RL (1995) Transformation of grape (Vitis vinifera) zygotic derived somatic embryos and regeneration of transgenic plants. Plant Cell Rep 14:589–592CrossRefGoogle Scholar
  133. Sheng J, Citovsky V (1996) Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8:1699–1710PubMedGoogle Scholar
  134. Takasaki T, Hatakeyama K, Ojima K, Watanabe M, Toriyama K, Hinata K (1996) Effects of various factors (hormone combinations, genotypes and antibiotics) on shoot regeneration from cotyledon expiants in Brassica rapa L. Plant Tissue Cult Lett 13:177–180CrossRefGoogle Scholar
  135. Töpfer R, Martini M, Schell J (1995) Modification of plant lipid synthesis. Science 268:681–686PubMedCrossRefGoogle Scholar
  136. Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1989) Construction of an intron containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250Google Scholar
  137. Vischi M, Marchetti S, Vannozzi GP, Olivieri AM (1996) Gene transfer in sunflower: comparison of different techniques. Proceedings 14th International Sunflower Conference: Biotechnology and Wild Species, Beijing, China, pp 1015–1020Google Scholar
  138. Vischi M, Marchetti S, Quagliaro G, Olivieri AM (1999) A focusing device for biolistic transformation of sunflower (Helianthus annuus L.) cotyledons. Helia 22:71–80Google Scholar
  139. Voelker TA, Worrell AC, Anderson L, Bleibaum J, Fan C, Hawkins DJ, Radke S E, Davies HM (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257:72–74PubMedCrossRefGoogle Scholar
  140. Voelker TA, Hayes TR, Cranmer AM, Turner JC, Davies HM (1996) Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. Plant J 9:229–241CrossRefGoogle Scholar
  141. Voelker TA, Jones A, Cranmer AM, Davies HM, Knutzon DS (1997) Broad-range and binary-range suggest an alternative mechanism for medium-chain production in seeds. Plant Physiol 114:669–667PubMedCrossRefGoogle Scholar
  142. Waiden R, Wingender R (1995) Gene-transfer and plant-regeneration techniques. Trends Biotechnol 13:324–331CrossRefGoogle Scholar
  143. Weber S (1998) Genetische Transformation der Sonnenblume (Helianthus annuus L.) fur eine gezielte Veränderung des Fettsäuremusters. Vortr Pflanzenzüchtg 43:265–269Google Scholar
  144. Weber S, Lühs W, Friedt W (1995) Application of microspore culture in Brassica napus crosses involving resynthesized rapeseed. Eucarpia Cruciferae Newslett 17:40–41Google Scholar
  145. Weber S, Horn R, Friedt W (1998a) Optimierung der Agrobacterium tumefaciens vermittelten Transformation bei der Sonnenblume (Helianthus annuus L.). Vortr Pflanzenzüchtg 42:134–136Google Scholar
  146. Weber S, Horn R, Friedt W (1998b) Improvement of sunflower transformation: the use of macerating enzymes. In: Bervillé A, Tersac M (eds) 4th European Conference on Sunflower Biotechnology, 20–23 Oct. INRA, Montpellier, France, p 34Google Scholar
  147. Weber S, Horn R, Friedt W (2000a) Introgression of high regeneration potential in vitro into cultivated sunflower (Helianthus annuus L.) by interspecific hybridization. Euphytica (in press)Google Scholar
  148. Weber S, Landes N, Etz P, Franke D, Horn R, Friedt W (2000b) Improvement of Agrobac-terium-mediated shoot tip transformation in sunflower. Proceedings of the 15th International Sunflower Conference, 12–16 June, Toulouse, France (in press)Google Scholar
  149. Weier D, Hanke C, Eickelkamp A, Lühs W, Dettendorfer J, Schaffert E, Möllers C, Friedt W, Wolter FP, Frentzen M (1997) Trierucoylglycerol biosynthesis in transgenic plants of rapeseed (Brassica napus L.). Fett/Lipid 99: 160–165CrossRefGoogle Scholar
  150. Weier D, Lühs W, Dettendorfer J, Frentzen M (1998) sn-l-Acyl-glycerol-3-phosphate acyltransferase of Escherichia coli causes insertion of cis-11 eicosenoic acid into the sn-2 position of transgenic rapeseed oil. Mol Breed 4:39–46CrossRefGoogle Scholar
  151. White TC, Simmonds D, Donaldson P, Singh J (1994) Regulation of BN115, a low-temperature-responsive gene from winter Brassica napus. Plant Physiol 106:917–928PubMedCrossRefGoogle Scholar
  152. Wilmink A, Dons JJM (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol Biol Rep 11:165–185CrossRefGoogle Scholar
  153. Zarhloul MK, Friedt W, Khoschkhoi-Yazdi MR, Lühs W (1999a) Genetic transformation and shoot regeneration ability of resynthesised Brassica napus line “RS306”. Eucarpia Cruciferae Newslett 21:59–60Google Scholar
  154. Zarhloul MK, Lühs W, Ehemann AS, Hausmann L, Friedt W, Töpfer R (1999b) Molecular Approaches to the biosynthesis of medium-chain triacylglycerols in Brassica napus. In: Wratten N, Salisbury BA (eds) Proceedings of the 10th International Rapeseed Congress, 26–29 Sept, GCICRC, Canberra, Australia, p 189Google Scholar
  155. Zhang FL, Takayata Y, Xu JB (1998) Medium and genotype factors influencing shoot regeneration from cotyledonary expiants of Chinese cabbage (Brassica campestris L ssp. Pekinensis). Plant Cell Rep 17:780–786CrossRefGoogle Scholar
  156. Zou JT, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–923PubMedCrossRefGoogle Scholar
  157. Zupan JR, Zambryski P (1995) Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 107:1041–1047PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Steffen Weber
    • 1
  • Karim Zarhloul
    • 1
  • Wolfgang Friedt
    • 1
  1. 1.Institut für Pflanzenbau und PflanzenzüchtungIFZGiessenGermany

Personalised recommendations