Advertisement

Genetics of Phytopathogenic Bacteria

  • Jutta Ahlemeyer
  • Rudolf Eichenlaub
Part of the Progress in Botany book series (BOTANY, volume 62)

Abstract

Only a small proportion of bacteria are plant pathogenic and have developed mechanisms to invade and colonize their host plants and cause disease. However, resistant host-plant cultivars and certain non-host plants are able to recognize and combat phytopathogenic bacteria. These resistant plants react with a localized induced cell death at the site of infection; this is termed hypersensitive response (HR) and is induced by so-called elicitors, such as avirulence proteins (Avr proteins). These are recognized by corresponding receptor proteins in the plant. It has been shown that the ability to cause disease in compatible interactions with host plants and the induction of HR in incompatible interactions both depend on the ability of the bacteria to express a cluster of genes termed hrp. (hypersensitive reaction and pathogenicity; Lindgren et al. 1986). Thus, hrp. mutants of plant pathogenic bacteria cause no detectable reactions in either host or non-host plants. Hrp genes seem to be a common feature of all Gram-negative plant pathogenic bacteria. Some of the hrp. genes encode a protein-secretion mechanism known from animal pathogenic bacteria (the type III secretion system) which apparently enables them to direct proteins into plant cells. The type III secretion system differs markedly from the earlier discovered type I protein secretion [which involves adenosine triphosphate (ATP)-binding cassette transporters] and the signal-peptide/sec-dependent type II secretion system (Salmond and Reeves 1993; Lee 1997).

Keywords

Hypersensitive Response Secretion System Xanthomonas Campestris Plant Pathogenic Bacterium Phytopathogenic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfano JR, Collmer A (1996) Bacterial pathogens in plants: life up against the wall. Plant Cell 8:1683–1698PubMedGoogle Scholar
  2. Alfano JR, Collmer A (1997) The type III (hr.) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J Bacteriol 179:5655–5662PubMedGoogle Scholar
  3. Alfano JR, Bauer TM, Milos TM, Collmer A (1996) Analysis of the role of the Pseudomonas syringa. pv. syringa. HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally non-polar hrp. deletion mutations, truncated HrpZ fragments, and hrm. mutations. Mol Microbiol 19:715–728PubMedCrossRefGoogle Scholar
  4. Arlat M, Van Gijsegem F, Huet JC, Pernollet JC, Boucher CA (1994) PopA1, a protein which induces a hypersensitive-like response on specific Petuni. genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J 13:543–553PubMedGoogle Scholar
  5. Atkinson MM, Huang J-S, Knopp JA (1985) The hypersensitive reaction of tobacco to Pseudomonas syringa. pv. pisi. Plant Physiol 79:843–847PubMedCrossRefGoogle Scholar
  6. Bahro R, Dreier J, Eichenlaub R (1997) Genetics of phytopathogenic bacteria. Prog Bot 58:410–427CrossRefGoogle Scholar
  7. Baker B, Zambryskii P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733PubMedCrossRefGoogle Scholar
  8. Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321PubMedCrossRefGoogle Scholar
  9. Beer SV, Bauer DW, Jiang XH, Laby RJ, Sneath BJ, Wei Z-M, Wilcox DA, Zumoff CH (1991) The hr. gene cluster of Erwinia amylovora. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer Academic, Dordrecht, pp 53–60CrossRefGoogle Scholar
  10. Bergman T, Erickson K, Galyov E, Persson C, Wolf-Watz H (1994) The Irc. (yscN/.) gene cluster of Yersinia pseudotuberculosi. is involved in Yop secretion and shows high homology to the sp. gene cluster of Shigella flexner. and Salmonella typhimurium. J Bacteriol 176:2619–2626PubMedGoogle Scholar
  11. Bogdanove AJ, Beer SV, Bonas U, Boucher CA, Collmer A, Coplin DL, Cornelis GR, Huang HC, Hutcheson SW, Panopoulos NJ, Van Gijsegem F (1996) Unified nomenclature for broadly conserved hr. genes of phytopathogenic bacteria. Mol Microbiol 20:681–683PubMedCrossRefGoogle Scholar
  12. Bonas U, Van den Ackerveken G (1999) Gene-for-gene interactions: Bacterial avirulence proteins specify plant disease resistance. Curr Opin Microbiol 2:94–98PubMedCrossRefGoogle Scholar
  13. Bonas U, Schulte R, Fenselau S, Minsavage GV, Staskawicz BJ (1991) Isolation of a gene cluster from Xamthomonas campestri. pv. vesicatori. that determines pathogenicity and the hypersensitive response on pepper and tomato. Mol Plant Microbe Interact 4:81–88CrossRefGoogle Scholar
  14. Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and wound-induced oxidative cross-linking of proline-rich plant cell wall proteins: a novel, rapid defence response. Cell 70:21–30PubMedCrossRefGoogle Scholar
  15. Chandra S, Low PS (1997) Measurements of Ca2+ fluxes during the oxidative burst in aequorin-transformed tobacco cells. J Biol Chem 272:8274–8278CrossRefGoogle Scholar
  16. Charkowski AO, Huang HC, Collmer A (1997) Altered localization of HrpZ in Pseudomonas syringa. pv. syringae hr. mutants suggests that different components of the type III secretion pathway control protein translocation across the inner and outer membranes of Gram-negative bacteria. J Bacteriol 197:3866–3874Google Scholar
  17. Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of systemic acquired resistance by salicylic acid. Science 262:1883–1886PubMedCrossRefGoogle Scholar
  18. Colinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40CrossRefGoogle Scholar
  19. Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8:1793–1807PubMedGoogle Scholar
  20. Delledonne M, Xiao Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588PubMedCrossRefGoogle Scholar
  21. Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsi. suspension cultures. Biochem J 330:115–120PubMedGoogle Scholar
  22. Dietrich RA, Delaney TP, Uknes SJ, Ward EJ, Ryales JA, Dangl JL (1994) Arabidopsi. mutants simulating disease resistance response. Cell 77:565–578Google Scholar
  23. Dong H, Delaney TP, Bauer DW, Beer SV (1999) Harpin induces resistance in Arabidopsi. through the systemic acquired resistance pathway mediated by salicylic acid and the NIM. gene. Plant J 20:207–215PubMedCrossRefGoogle Scholar
  24. Ebel J, Cosio EG (1994) Elicitor of plant defence responses. Int Rev Cytol 148:1–36CrossRefGoogle Scholar
  25. Engelbrecht F, Dominguez-Bernal G, Hess J, Dickneite C, Greiffenberg L, Lampidis R, Raffelsbauer D, Daniels JJ, Kreft J, Kaufmann SH, Vazques-Boland JA, Goebel W (1998) A novel PrfA-regulated chromosomal locus, which is specific for Listeria ivanovi., encodes two small, secreted internalins and contributes to virulence in mice. Mol Microbiol 30:405–417PubMedCrossRefGoogle Scholar
  26. Felix G, Regenass M, Spanu P, Boller T (1994) The protein phosphatase inhibitor calyculin A mimics elicitor action in plant cells and induces rapid hyperphosphorylation of specific proteins as revealed by pulse labeling with [32P]phosphate. Proc Natl Acad Sci USA 91:953–956CrossRefGoogle Scholar
  27. Flor H-H (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296CrossRefGoogle Scholar
  28. Galyov EE, Hakansson S, Forsberg A, Wolf-Watz H (1993) A secreted protein kinase of Yersinia pseudotuberculosi. is a indispensable virulence determinant. Nature 361:730–732PubMedCrossRefGoogle Scholar
  29. Gopolan S, Bauer DW, Alfano JR, Loniello AO, He SY, Collmer A (1996) Expression of the Pseudomonas syringa. avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype specific hypersensitive cell death. Plant Cell 9:1095–1105Google Scholar
  30. Greenberg JT (1996) Programmed cell death: a way of life in plants. Proc Natl Acad Sci USA 93:12094–12097PubMedCrossRefGoogle Scholar
  31. Greenberg JT, Guo A, Klessig DF, Ausubel FM (1994) Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551–563PubMedCrossRefGoogle Scholar
  32. Grimm C, Aufsatz W, Panopoulos NJ (1995) The hrpR. locus of Pseudomonas syringa. pv. phaseolicol. constitutes a complex regulatory unit. Mol Microbiol 15:155–165PubMedCrossRefGoogle Scholar
  33. Guan K, Dixon JE (1990) Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249:553–556PubMedCrossRefGoogle Scholar
  34. Hammond-Kosak KE, Jones JDG (1996) Resistance gene-dependent plant defence responses. Plant Cell 8:1776–1791Google Scholar
  35. Hammond-Kosack KE, Jones CG (1997) Plant disease resistance genes. Annu Rev Physiol Plant Mol Biol 48:575–607CrossRefGoogle Scholar
  36. He SY (1998) Type III protein secretion systems in plant and animal pathogenic bacteria. Annu Rev Phytopathol 36:363–392PubMedCrossRefGoogle Scholar
  37. He SY, Bauer DW, Collmer A, Beer SV (1994) Hypersensitive response elicited by Erwinia amylovor. harpin requires active plant metabolism. Mol Plant Microbe Interact 7:289–292CrossRefGoogle Scholar
  38. He SY, Yoshiaki Y, Nishizawa Y, Takai R, Yamada K, Sakano K (1998) Gene activation by cytoplasmic acidification in suspension-cultured rice cells in response to the potent elicitor, N-acetylchitoheptaose. Mol Plant Microbe Interact 11:1167–1174CrossRefGoogle Scholar
  39. Heath MC (1980) Reaction of nonsuscepts to fungal pathogens. Annu Rev Phytopathol 18:211–236CrossRefGoogle Scholar
  40. Hirano SS, Charkowski AO, Collmer A, Willis DK, Upper CD (1999) Role of the hr. type III protein secretion system in growth of Pseudomonas syringa. pv. syringa. B728a on host plants in the field. Proc Natl Acad Sci USA 96:9851–9856PubMedCrossRefGoogle Scholar
  41. Horns T, Bonas U (1996) The rpoN gene of Xanthomonas campestri. pv. vesicatori. is not required for pathogenicity. Mol Plant Microbe Interact 9:856–859PubMedCrossRefGoogle Scholar
  42. Huang HC, Schurik R, Denny TP, Atkinson MM, Baker Cj, Yucel I, Hutcheson SW, Collmer A (1988) Molecular cloning of a Pseudomonas syringa. pv. syringa. gene cluster that enables Pseudomonas fluorescen. to elicit the hypersensitive response in tobacco plants. J Bacteriol 170:4748–4756PubMedGoogle Scholar
  43. Hutcheson SW (1998) Current concepts of active defense in plants. Annu Rev Phytopathol 36:59–90PubMedCrossRefGoogle Scholar
  44. Innes RW, Bent AF, Kunkel BN, Bisgrove SR, Staskawicz BJ (1993) Molecular analysis of avirulence gene avrRpt. and identification of a putative regulatory sequence common to all known Pseudomonas syringa. avirulence genes. J Bacteriol 175:4859–4869PubMedGoogle Scholar
  45. Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O2 - from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci USA 94:4800–4805PubMedCrossRefGoogle Scholar
  46. Jones DA, Jones JDG (1997) The role of leucin-rich repeat proteins in plant defences. Adv Bot Res 24:89–167CrossRefGoogle Scholar
  47. Keen NT (1992) Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24:447–463CrossRefGoogle Scholar
  48. Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmatic calcium. Nature 352:524–526PubMedCrossRefGoogle Scholar
  49. Kobe B, Deisenhofer J (1994) The leucin-rich repeat: a versatile binding motif. Trends Biochem Sci 19:415–421PubMedCrossRefGoogle Scholar
  50. Kumar A, Ernst RR, Wuthich K (1980) A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun 95:1–6PubMedCrossRefGoogle Scholar
  51. Lee CA (1997) Type III secretion systems: machines to deliver bacterial proteins into eukaryotic cells? Trends Microbiol 5:148–155PubMedCrossRefGoogle Scholar
  52. Lindgren PB (1997) The role of hr. genes during plant-bacterial interactions. Annu Rev Phytopathol 35:129–152PubMedCrossRefGoogle Scholar
  53. Lindgren PB, Peet RC, Panopoulos NJ (1986) Gene cluster of Pseudomonas syringa. pv. “phaseolicola” controls pathogenicity on bean plants and hypersensitivity on nonhost plants. J Bacteriol 168:512–522PubMedGoogle Scholar
  54. Lorang JM, Shen H, Kobayashi D, Cooksey D, Keen NT (1994) AvrA and AvrE in Pseudomonas syringa. pv. tomat. PT23 play a role in virulence on tomato plants. Mol Plant Microbe Interact 7:508–515CrossRefGoogle Scholar
  55. Melchers LS, Apotheker-De Groot M, Van der Knapp J, Ponstein AS, Sela-Buurlage M, Bol JF, Cornelissen BJC, Van den Elzen PJM, Linthorst HJM (1994) A new class of tobacco chitinases homologous to bacterial exo-chitinases display antifungal activity. Plant J 5:469–480PubMedCrossRefGoogle Scholar
  56. Mittler R, Lam E (1996) Sacrifice in the face of foes: Pathogen-induced programmed cell death in plants. Trends Microbiol 4:10–15PubMedCrossRefGoogle Scholar
  57. Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724PubMedGoogle Scholar
  58. Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449–460PubMedCrossRefGoogle Scholar
  59. Parker JE, Coleman MJ (1997) Molecular intimacy between proteins specifying plant-pathogen recognition. Trends Biochem Sci 22:291–296PubMedCrossRefGoogle Scholar
  60. Parker JE, Szabo V, Staskawicz B, Lister C, Dean C, Daniels MJ, Jones J (1993) Phenotypic characterization and molecular mapping of the Arabidopsis thalian. locus RPP., determining disease resistance to Peronospora parasitica. Plant J 4:821–831CrossRefGoogle Scholar
  61. Peng M, Kuc J (1992) Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathol 82:696–699CrossRefGoogle Scholar
  62. Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580PubMedGoogle Scholar
  63. Pirhonen MU, Lidell MC, Rowley DL, Lee SW, Jin S, Liang Y, Silverstone S, Keen NT, Hutcheson SW (1996) Phenotypic expression of Pseudomonas syringae av. genes in E. col. is linked to the activities of the hr.-encoded secretion system. Mol Plant Microbe Interact 9:252–260PubMedCrossRefGoogle Scholar
  64. Plano GV, Barve SS, Straley SC (1991) LcrD: a membrane-bound regulator of the Yersinia pesti. low-Ca2+ response. J Bacteriol 173:7293–7302PubMedGoogle Scholar
  65. Ritter C, Dangl JL (1995) The av.Rmpl gene of Pseudomonas syringa. pv. maculicol. is required for virulence on Arabidopsis. Mol Plant Microbe Interact 8:444–453PubMedCrossRefGoogle Scholar
  66. Roine E, Wei W, Yuan J, Nurmiaho-Lassila E-L, Kalkkinen N, Romantschuk M, He SY (1997) Hrp-pilus: an hr.-dependent bacterial surface appendage produced by Pseudomonas syringa. pv. syringae. Proc Natl Acad Sci USA 94:3459–3464PubMedCrossRefGoogle Scholar
  67. Rosquist DE, Magnusson K-E, Wolf-Watz H (1994) Target cell contact triggers expression and polarized transfer of the Yersini. YopE cytotoxin into mammalian cells. EMBO J 13:964–972Google Scholar
  68. Rossier O, Wengelnik K, Hahn K, Bonas U (1999) The Xanthomona. Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Proc Natl Acad Sci USA 96:9368–9373PubMedCrossRefGoogle Scholar
  69. Ryerson DE, Heath MC (1996) Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by fungal infection or by abiotic treatment. Plant Cell 8:393–402PubMedGoogle Scholar
  70. Salmond GPC, Reeves PJ (1993) Membrane traffic wardens and protein secretion in Gram-negative bacteria. Trends Biochem Sci 18:7–12PubMedCrossRefGoogle Scholar
  71. Schulte R, Bonas U (1992) Expression of the Xanthomonas campestri. pv. vesicatoria hr. gene cluster, which determines pathogenicity and hypersensitivity on pepper and tomato, is plant inducible. J Bacteriol 174:815–823PubMedGoogle Scholar
  72. Shibuya N, Kaku H, Kuchitsu K, Maliarik M (1993) Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitors in the membrane fraction from suspension-cultured rice cells. FEBS Lett 329:75–78PubMedCrossRefGoogle Scholar
  73. Showalter AM (1993) Structures and function of plant cell wall proteins. Plant Cell 5:9–23PubMedGoogle Scholar
  74. Sory MP, Boland A, Lambermont I, Cornelis GR (1995) Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cya. gene fusion approach. Proc Natl Acad Sci USA 92:11998–112002Google Scholar
  75. Stab MR, Ebel J (1987) Effects of Ca2+ on phytoalexin induced by fungal elicitors in soybean. Arch Biochem Biophys 257:416–423PubMedCrossRefGoogle Scholar
  76. Sticher L, Mauch-Mani B, Métaux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270PubMedCrossRefGoogle Scholar
  77. Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B (1993) Plant pathogenesis-related proteins and their role in defense against pathogens. Biochimie 75:687–706PubMedCrossRefGoogle Scholar
  78. Tenhaken R, Levine A, Brisson LF, Dixon RA, Lamb C (1995) Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci USA 92:4158–4163PubMedCrossRefGoogle Scholar
  79. Umemoto N, Kakotani M, Iwamatsu A, Yoshikawa M, Yamaoka N, Ishida I (1997) The structure and function of a soybean β-glucan-elicitor-binding protein. Proc Natl Acad Sci USA 94:1029–1034PubMedCrossRefGoogle Scholar
  80. Van den Ackerveken G, Marois E, Bonas U (1996) Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87:1307–1316PubMedCrossRefGoogle Scholar
  81. Vivian A, Gibbon MJ (1997) Avirulence genes in plant pathogenic bacteria: signals or weapons? Microbiology 143:693–704CrossRefGoogle Scholar
  82. Wei W, Plovanich-Jones A, Deng WL, Jin QL, Collmer A, Huang HC, He SY (2000) The gene coding for the Hrp pilus structural protein is required for type III secretion of Hrp and Avr proteins in Pseudomonas syringa. pv. tomato. Proc Natl Acad Sci USA 97:2247–2252PubMedCrossRefGoogle Scholar
  83. Wei Z-M, Beer SV (1995) HrpL activates Erwinia amylovora hr. gene transcription and is a member of the ECF subfamily of a factors. J. Bacteriol 177:6201–6210PubMedGoogle Scholar
  84. Wei Z-M, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer S (1992) Harpin, elicitor of the hypersensitive response produced by plant pathogen Erwinia amylovora. Science 257:85–88PubMedCrossRefGoogle Scholar
  85. Wengelnik K, Bonas U (1996) HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hr. cluster of Xanthomonas campestri. pv. vesicatoria. J Bacteriol 178:3462–3469PubMedGoogle Scholar
  86. Wengelnik K, Marie C, Russel M, Bonas U (1996a) Expression and localization of HrpA1, a protein of Xanthomonas campestri. pv. vesicatori. essential for pathogenicity and induction of the hypersensitive reaction. J Bacteriol 178:1061–1069PubMedGoogle Scholar
  87. Wengelnik K, Van den Ackerveken G, Bonas U (1996b) HrpG, a key hr. regulator protein of Xanthomonas campestri. pv vesicatori. is homologous to two-component response regulators. Mol Plant-Microbe Interact 9:704–712PubMedCrossRefGoogle Scholar
  88. Wengelnik K, Rossier O, Bonas U (1999) Mutations in the regulatory gene hrp. of Xanthomonas campestri. pv. vesicatori. result in constitutive expression of all hr. genes. J Bacteriol 181:6828–6831PubMedGoogle Scholar
  89. Whetten R, Sedroff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013PubMedGoogle Scholar
  90. Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692PubMedGoogle Scholar
  91. Xiao Y, Hue J, Yi J, Lu Y, Hutcheson SW (1994) Identification of a putative alternative σ factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringa. pv. syringa. Pss61 hr. and hrm. genes. J Bacteriol 176:1025–1036PubMedGoogle Scholar
  92. Yano A, Suzuki K, Uchimiya H, Shinshi H (1998) Introduction of hypersensitive cell death by a fungal protein in cultures of tobacco cells. Mol Plant Microbe Interact 11:115–123CrossRefGoogle Scholar
  93. Yuan J, He SY (1996) The Pseudomonas syringa. Hrp regulation and secretion system controls the production and secretion of multiple extracellular proteins. J Bacteriol 178:6399–6402PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jutta Ahlemeyer
    • 1
  • Rudolf Eichenlaub
    • 2
  1. 1.Institut für Pflanzenbau und Pflanzenzüchtung IIJustus-Liebig-Universität GiessenGiessenGermany
  2. 2.Lehrstuhl Gentechnologie/MikrobiologieUniversität BielefeldBielefeldGermany

Personalised recommendations