The Existence of Bark and Stem Photosynthesis in Woody Plants and Its Significance for the Overall Carbon Gain. An Eco-Physiological and Ecological Approach

  • Hardy Pfanz
  • Guido Aschan
Part of the Progress in Botany book series (BOTANY, volume 62)


Leaves are expected to be green (although they are sometimes reddish in the so-called blood forms or yellowish in the so-called aurea forms). The colour-determining pigments, the chlorophylls, are the cause of the leaves’ global importance in photosynthetic carbon fixation. The fact that stems can also contain chlorophyll is not directly evident. The outer bark layers are mostly brown (oak) or grey (beech, aspen) or sometimes even white (birch). However, bark tissues of younger twigs of trees are regularly greenish. The green colour is not caused by a surface layer of algae colonizing the outer wet parts of rhytidomes. By carefully peeling off layers of the dead outer bark of twigs and branches, a green colour indicates the presence of chlorophyll-containing tissues. The fact that the tree’s skeleton partly consists of green tissue has been known for centuries by bark-peeling basket makers, bast producers and even lovers who cut hearts into tree bark.


Woody Plant Fagus Sylvatica Crassulacean Acid Metabolism Alnus Glutinosa Outer Bark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aichele H (1950) Der Temperaturgang rings um eine Esche. Allg Forst Jagdz 121:119–121Google Scholar
  2. Anderson RF (1960) Forest and shade tree entomology. Wiley, New YorkGoogle Scholar
  3. Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635PubMedGoogle Scholar
  4. Bailey IN (1913) The preservation treatment of wood. II. The structure of the pith membranes in the tracheids of conifers and their relation to penetration of gases, liquids and finely divided solids into greened and seasoned wood. For Q 11:12–20Google Scholar
  5. Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, AssenGoogle Scholar
  6. Bazzaz FA, Wayne PM (1994) Coping with environmental heterogenity: the physiological ecology of tree seedling regeneration across the gap-understory continuum. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic Press, San Diego, pp 349–390Google Scholar
  7. Bossard CC, Rejmanek M (1992) Why have green stems? Funct Ecol 6:197–205Google Scholar
  8. Boysen-Jensen P, Müller D (1927) Undersogelser over stofproduktionen i yngre bevolksninger of ask og bog. Det Forstl Forsogsv Danmark 9:221–268Google Scholar
  9. Braune W, Leman A, Taubert H (1991) Pflanzenanatomisches Praktikum I, 6th edn. Fischer, JenaGoogle Scholar
  10. Brayman AA, Schaedle M (1982) Photosynthesis and respiration of developing Populus tremuloides internodes. Plant Physiol 69:911–915PubMedGoogle Scholar
  11. Buchel HB, Grosse W (1990) Localization of the porous partition responsible for pressurized gas transport in Alnus glutinosa (L.) Gaertn. Tree Physiol 6:247–256PubMedGoogle Scholar
  12. Butin H (1989) Krankheiten der Wald-und Parkbäume. Thieme, StuttgartGoogle Scholar
  13. Cannon W (1905) On the transpiration of Fouqueria splendens. Bull Torrey Bot Club 32:397–414Google Scholar
  14. Cannon W (1908) The topography of the chlorophyll apparatus in desert plants. Carnegie Institute Publication 98. Carnegie Institute, WashingtonGoogle Scholar
  15. Cappelletti C (1934) Ricerche sulla respirazione del legne. Ann Bot 20:470–503Google Scholar
  16. Cappelletti C (1937) Sulla respirazione del legno ed i suoi rapporti con Lècologia delia pianta Versamenti di liquido dalle perforazioni del rusto e loro significata. Ann Bot 21:417–464Google Scholar
  17. Carrodus BB, Triffett ACK (1975) Analysis of respiratory gases in woody stems by mass spectrometry. New Phytol 74:243–246Google Scholar
  18. Chase WW (1934) The composition, quantity, and physiological significance of gases in tree stems. Technical Bulletin 99. University of Minnesota, MinneapolisGoogle Scholar
  19. Chattaway MM (1953) The anatomy of the bark. I. Aust J Bot 1:402–433Google Scholar
  20. Chattaway MM (1955) The anatomy of the bark. II, III. Aust J Bot 3:21–176Google Scholar
  21. Cooke GB (1948) Cork and cork products. Econ Bot 2:393–402Google Scholar
  22. Covington WW (1975) Altitudinal variation of chlorophyll concentration and reflectance of the bark of Populus tremuloides. Ecology 56:715–720Google Scholar
  23. DuRietz GE (1945) Om fattigbarkoch rikbarksamhällen. Svensk Bot Tidskr 39:147–150Google Scholar
  24. Edwards TE, Hanson PJ (1995) Stem respiration in closed-canopy upland oak forest. Tree Physiol 16:433–439Google Scholar
  25. Eklund L (1990) Endogenous levels of oxygen, carbon dioxide and ethylene in stems of Norway spruce trees during one growing season. Trees Struct Funct 4:150–154Google Scholar
  26. Ellenberg H, Mayer R, Schauermann J (eds) (1986) Ökosystemforschung — Ergebnisse des Sollingprojektes 1966–86. Ulmer, StuttgartGoogle Scholar
  27. Esau K (1977) Anatomy of seed plants, 2nd edn. Wiley, New YorkGoogle Scholar
  28. Eschrich W (1995) Funktionelle Pflanzenanatomie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  29. Ewers FW, Fisher JB, Fichtner K (1991) Water flux and xylem structure in vines. In: Putz FE, Mooney HA (eds) The biology of vines, Cambridge University, Cambridge, pp 127–160Google Scholar
  30. Foote KC, Schaedle M (1976a) Diurnal and seasonal patterns pf photosynthesis and respiration by stems of Populus tremuloides Michx. Plant Physiol 58:651–655PubMedGoogle Scholar
  31. Foote KC, Schaedle M (1976b) Physiological characteristics of photosynthesis and respiration in stems of Populus tremuloides Michx. Plant Physiol 58:91–94PubMedGoogle Scholar
  32. Foote KC, Schaedle M (1978) The contribution of aspen bark photosynthesis to the energy balance of the stem. For Sci 24:569–573Google Scholar
  33. Gartner BL (ed) (1995) Plant stems: physiology and functional morphology. Academic Press, San DiegoGoogle Scholar
  34. Geurten T (1950) Untersuchungen über den Gaswechsel von Baumrinden. Forstwiss Centralbl 69:704–753Google Scholar
  35. Gibson A (1983) Anatomy of photosynthetic old stems of nonsucculent dicotyledons from North American deserts. Bot Gaz 144:347–362Google Scholar
  36. Gill AM (1975) Fire and the Australian flora: a review. Aust For 38:4–25Google Scholar
  37. Gill AM (1995) Stems and fires. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, pp 323–342Google Scholar
  38. Gill AM, Ashton DH (1968) Role of bark type in relative tolerance to fire of three central Victorian Eucalypts. Aust J Bot 16:491–498Google Scholar
  39. Givnish TJ (1995) Plants stems: biomechanical adaptation for energy capture and influence on species distribution. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, pp 3–49Google Scholar
  40. Glase JC, Granet K (1978) Bark chlorophyll in the American beech (Fagus grandifolia) varies with bark aspect. Am Midland Nat 100:510–512Google Scholar
  41. Gomez-Vasques BG (1977) Anatomia de la madera y corteza de Bursera longipes y Bursera copallifera. Thesis. University of Morelos, MorelosGoogle Scholar
  42. Grosse W (1997) Gas transport of trees. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees-contributions to modern tree physiology. Backhuys, LeidenGoogle Scholar
  43. Gundersen K (1954) Chlorophyll in young shoots of European beech (Fagus sylvatica) in winter. Nature 174:87–88Google Scholar
  44. Hagihara A, Yamaji K (1993) Dimension relation of branches in Hinoki [Chamaecyparis obtusa (Sieb. Et Zuce) Endl.]. Bull Nagoya Univ For 12:1–10Google Scholar
  45. Hari P, Nygren P, Korpilahti E (1991) Internal circulation of carbon within a tree. Can J For Res 21:514–515Google Scholar
  46. Holdheide W (1951) Anatomie mitteleuropäischer Gehölzrinden. In: Freund H (ed) Handbuch der Mikroskopie in der Technik V. Part I. Umschau, FrankfurtGoogle Scholar
  47. Ingham ER, Moldenke AR (1995) Microflora and microfauna on stems and trunks. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, pp 241–256Google Scholar
  48. Jacob A, Lehmann H, Stelzer R (1989) Entwicklung und Struktur von Lenticellen der Buche (Fagus sylvatica f. purpurea AIT). Flora 183:417–427Google Scholar
  49. Jahns HM (1995) Farne, Moose und Flechten Mittel- und Nordeuropas. BLV, MünchenGoogle Scholar
  50. Johansson N (1933) Om förveddade stammars andning, dess fastställande och betydelse. Svenska Skogvardsför Tidskr 31,242–49Google Scholar
  51. Kaipiainen LK, Sofronova Gl, Hari P, Yalynskaya EE (1998) The role of xylem in CO2 exchange in Pinus sylvestris woody stems. Russ J Plant Physiol 45:587–593Google Scholar
  52. Kakubari Y (1988) Diurnal and seasonal fluctuations in the bark respiration of standing Fagus sylvatica trees at Soiling, West Germany. J Jpn For Soc 70:64–70Google Scholar
  53. Katz C, Oren R, Schulze E-D, Millburn JA (1989) Uptake of water and solutes through twigs of Picea abies (L.) Karst. Trees Struct Funct 3:33–37Google Scholar
  54. Kauppi A (1991) Seasonal fluctuations in chlorophyll content in birch stems with special reference to bark thickness and light transmission, a comparison between sprouts and seedlings. Flora 185:107–125Google Scholar
  55. Keller T (1973) CO2 exchange of bark of deciduous species in winter. Photosynthetica 7:320–324Google Scholar
  56. Ketskhoveli EN (1958) Change with time of the dynamics of chlorophyll in the bark of trees. Soobshcheniya Akad Nauk Gruzin SSR 21:179–181Google Scholar
  57. Kharouk VI, Middleton EM, Spencer SL, Rock BN, Williams DL (1995) Aspen bark photosynthesis and its significance to remote sensing and carbon budget estimate in the boreal ecosystem. Water Air Soil Pollut 82:483–497Google Scholar
  58. Kinerson AS (1975) Relationships between plant surface area and respiration in loblolly pine. J Appl Ecol 12:965–971Google Scholar
  59. Kluge M, Ting IP (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. Springer, Berlin Heidelberg New YorkGoogle Scholar
  60. Kozlowski TT, Pallardy SG (1997) Physiology of woody plants, 2nd edn. Academic Press, San DiegoGoogle Scholar
  61. Kriedemann PE, Buttrose MS (1971) Chlorophyll content and photosynthetic activity within woody shoots of Vitis vinifera (L.). Photosynthetica 5:22–27Google Scholar
  62. Langenfeld-Heyser R (1989) CO2 fixation in stem slices of Picea abies (L.) Karst: microautoradiography studies. Trees Struct Funct 3:24–32Google Scholar
  63. Langenfeld-Heyser R (1997) Physiological functions of lenticels. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees-contributions to modern tree physiology. Backhuys, Leiden, pp 43–46Google Scholar
  64. Langenfeld-Heyser R, Schella B, Buschmann K, Speck F (1996) Microautoradiographic detection of CO2 fixation in lenticel chlorenchyma of young Fraxinus excelsior L. stems in early spring. Trees Struct Funct 10:255–260Google Scholar
  65. Larcher W (1994) Ökophysiologie der Pflanzen: Leben, Leistung und Streßbewältigung der Pflanzen in ihrer Umwelt, 5th edn. Ulmer, StuttgartGoogle Scholar
  66. Larcher W, Lutz C, Nagele M, Bodner M (1988) Photosynthetic functioning and ultrastructure of chloroplasts in stem tissue of Fagus sylvatica. J Plant Physiol 132:731–737Google Scholar
  67. Larsen P (1939) Regenererende Kulsyreassimilation hos askegrene. For Forsoegsvaesen Danmark 14:13–52Google Scholar
  68. Levy PE, Meir P, Allen SJ, Jarvis PG (1999) The effect of aqueous transport of CO2 in xylem sap on gas exchange in woody plants. Tree Physiol 19:53–58PubMedGoogle Scholar
  69. Lieberum HJ (1961) Temperatur in stehenden Holzgewächsen. Thesis. University of Göttingen, GöttingenGoogle Scholar
  70. Liu K (1997) Können wässrige Lösungen über Lenticellen ins Sprossachseninnere gelangen? Untersuchungen im Winter. Thesis. University of Göttingen, GöttingenGoogle Scholar
  71. Liu R, Jiang F, Tian D (1992) Change of sulfur content in the bark and its application in monitoring the air sulfur dioxide pollution in winter. Acta Bot Sin 34:622–629Google Scholar
  72. Lüttge U, Kluge M, Bauer G (1997) Botanik, 2nd edn. Wiley, WeinheimGoogle Scholar
  73. Mägdefrau K, Wutz A (1961) Leichthölzer und Tonnenstämme in Scharzwassergebieten und Dornbuschwäldern des tropischen Südamerika. Forstwiss Centralbl 80:17–28Google Scholar
  74. Martin TA, Teskey RO, Dougherty PM (1994) Movement of respiratory CO2 in stems of loblolly pine (Pinus taeda L.) seedlings. Tree Physiol 14:481–495PubMedGoogle Scholar
  75. Masuch G (1993) Biologie der Flechten. Quelle and Meyer, StuttgartGoogle Scholar
  76. Mauseth JD (1995) Botany. Saunders College, PhiladelphiaGoogle Scholar
  77. MacDougal DT, Working EB (1933) The pneumatic system of plants, especially trees. Carnegie Institution Publication 441. Carnegie Institute, WashingtonGoogle Scholar
  78. Mirschkorsch C (1996) Die Stamm-und Zweigtranspiration eines jungen Fichtenbestandes (Picea abies L.Karst.) und die Bedeutung für den CO2-Netto-Austausch. Thesis, University of Bayreuth, BayreuthGoogle Scholar
  79. Möller CM, Müller D, Nielsen J (1954) Respiration in stem and branches of beech. Forstl Forsogr Dan 21:273–301Google Scholar
  80. Monk CD (1966) An ecological significance for evergreens. Ecology 47:504–505Google Scholar
  81. Müller NJC (1898) Untersuchungen über Atmung und Energie in der Pflanze. Beitr Z Wiss Bot 2:2Google Scholar
  82. Muthuchelian K (1992) Photosynthetic characteristics of bark tissues of the tropical tree Bombax ceiba L. Photosynthetica 26:633–636Google Scholar
  83. Neger FW (1919) Ein neues untrügliches Merkmal für Rauchschäden bei Laubhölzern. Angew Bot 1:129–138Google Scholar
  84. Neger FW (1922) Beiträge zur Kenntnis des Baues und der Wirkungsweise der Lentizellen II. Berl Dtsch Bot Ges 40:306–313Google Scholar
  85. Neger FW, Kupka T (1920) Beiträge zur Kenntnis des Baues und der Wirkungsweise der Lenticellen I. Berl Dtsch Bot Ges 38:141–149Google Scholar
  86. Negisi K (1972) Diurnal fluctuation of CO2-release from the bark of a standing Magnolia obovata tree. J Jpn For Soc 54:257–263Google Scholar
  87. Negisi K (1974) Respiration rates in relation to diameter and age in stem or branch sections of young Pinus densiflora trees. Bull Tokyo Univ For 66:209–222Google Scholar
  88. Negisi K (1978) Daytime depression in bark respiration and radial shrinkage in stem of a standing Pinus densiflora tree. J Jpn For Soc 60:380–382Google Scholar
  89. Negisi K (1982) Diurnal fluctuations of the stem bark respiration in relationship to the wood temperature in standing young Pinus densiflora, Chamaecyparis obtusa and Quercus myrsinaefolia trees. J Jpn For Soc 64:315–319Google Scholar
  90. Nicolai V (1985) Die ökologische Bedeutung verschiedener Rindentypen bei Bäumen. Thesis. University of Marburg, MarburgGoogle Scholar
  91. Nicolai V (1986) The bark of trees: thermal properties, microclimate and fauna. Oecologia 69:148–160Google Scholar
  92. Nilsen ET (1995) Stem photosynthesis extent, patterns and role in plant carbon economy. In: Gartner B (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, pp 223–240Google Scholar
  93. Nilsen ET, Bao Y (1990) The influence of water stress on stem and leaf photosynthesis in Glycine max and Sparteum junceum (Leguminosae). Am J Bot 77:1007–1015Google Scholar
  94. Nilsen ET, Meinzer FC, Rundel PW (1989) Stem photosynthesis in Psorothamnus spinosus (smoke tree) in the Sonoran Desert of California. Oecologia 79:193–197Google Scholar
  95. Nilsen ET, Karpa D, Mooney HA, Field C (1993) Patterns of stem photosynthesis in two invasive legumes (Spartium junceum, Cytisus scoparius) of the California coastal region. Am J Bot 800:1126–1136Google Scholar
  96. Nobel PS, Hartsock T (1986) Leaf and stem CO2 uptake in the three subfamilies of the Cactaceae. Plant Physiol 80:913–917PubMedGoogle Scholar
  97. Oohata S, Shidei T (1972) Seasonal changes in respiratory rate of stems and their growth. Bull Kyoto Univ For 43:63–72Google Scholar
  98. Pearson IC, Lawrence DB (1958) Photosynthesis in aspen bark. Am J Bot 45:383–387Google Scholar
  99. Perry TO (1971) Winter-season photosynthesis and respiration by twigs and seedlings of deciduous and evergreen trees. For Sci 17:41–44Google Scholar
  100. Pfanz H (1994) Apoplastic and symplastic proton concentrations and their significance for metabolism. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecological studies, vol 100. Springer, Berlin Heidelberg New York, pp 103–122Google Scholar
  101. Pfanz H (1999) Photosynthetic performance of twigs and stems of trees with and without stress. Phyton 39:29–33Google Scholar
  102. Pfanz H, Heber U (1986) Buffer capacities of leaves, leaf cells, and leaf cell organelles in relation to fluxes of potentially acidic gases. Plant Physiol 81:597–602PubMedGoogle Scholar
  103. Pfanz H, Heber U (1989) Determination of extra- and intracellular pH values in relation to the action of acidic gases on cells. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis. New Series, vol 9. Gases in plant and microbial cells. Springer, Berlin Heidelberg New York, pp 322–343Google Scholar
  104. Pfanz H, Wobus A (1998) Belastungserscheinungen und Entwicklungsstrategien von Laubbäumen des Vorwaldes im immissionsbelasteten Freiland des Erzgebirges, unter simulierten Immissionsbedingungen in Open Top-Kammern und im Labor. In: Nebe W, Roloff A, Vogel M (eds) Contributions to forest science, vol 4. Tharandt, Dresden, pp 157–162Google Scholar
  105. Pfanz H, Lomsky B, Hällgren J-E (1998) How do SO2 and other air pollutants affect leaf and stem photosynthesis in trees? In: De Kok, LJ, Stulen I (eds) Responses of plant metabolism to air pollution and global change. Backhuys, Leiden, pp 423–430Google Scholar
  106. Pilarski J (1984) Content of chlorophyllus pigments in shoot bark and leaves in Syringa vulgaris L. Bull Pol Acad Sci Biol Sci 32:415–423Google Scholar
  107. Pilarski J (1990) Photochemical activity of isolated chloroplasts from the bark and leaves of lilac (Syringa vulgaris L.). Photosynthetica 24:186–189Google Scholar
  108. Pilarski J (1993) Intensity of oxygen production in the process of photosynthesis in shoots and leaves of lilac (Syringa vulgaris L.). Acta Physiol Plant 15:249–256Google Scholar
  109. Prebeg T, Ljubesic N, Wrischer M (1999) Structural and physiological characteristics of the coloured tips of Leucojum petals. In: Vodnik D, Zel J (eds) 2nd Slovenian Symposium on Plant Physiology. University of Ljubljana, Slovenia Gozd Martuljek, p 62Google Scholar
  110. Romberger JA, Hejnowitz Z, Hill JF (1993) Plant structure: function and development. Springer, Berlin Heidelberg New YorkGoogle Scholar
  111. Ross H (1887) Beiträge zur Kenntnis des Assimilationsgewebes und der Korkentwicklung armlaubiger Pflanzen. Thesis. University of Freiburg, FreiburgGoogle Scholar
  112. Roth I (1981) Structural patterns of tropical barks. Handbuch der Pflanzenanatomie IX, vol 3. Borntraeger, BerlinGoogle Scholar
  113. Ryan MG, Lavigne MB, Gower ST (1997) Annual carbon costs of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J Geophys Res 102:871–883Google Scholar
  114. Sakai A (1966) Temperature fluctuations in wintering trees. Physiol Plant 19:105–114Google Scholar
  115. Sandved KB, Prance GT, Prance AE (1993) Bark. The formation, characteristics, and uses of bark around the world. Timber Press, PortlandGoogle Scholar
  116. Schaedle M (1975) Tree photosynthesis. Annu Rev Plant Physiol 26:101–115Google Scholar
  117. Schaedle M, Foote KC (1971) Seasonal changes in the photosynthetic capacity of Populus tremuloides bark. For Sci 17:309–313Google Scholar
  118. Schmidt J, Batic F, Pfanz H (2000) Photosynthetic performance of leaves and twigs of evergreen holly (Ilex aquifolium L.). Phyton 40:179–190Google Scholar
  119. Schneider CK (1903) Dendrologische Winterstudien. Fischer JenaGoogle Scholar
  120. Schönherr J (1982) Resistance of plant surfaces to water loss: transport properties of cutin, suberin, and lipids. In: Lange OL, Nobel PL, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology. Physiological plant ecology II, vol 12B. Springer, Berlin Heidelberg New York, pp 154–179Google Scholar
  121. Schultz HR, Matthews MA (1993) Xylem development and hydraulic conductance in sun and shade shoots of grapevine (Vitis vinifera L.) — evidence that low light uncouples water transport from leaf area. Planta 190:393–406Google Scholar
  122. Scott DG (1907) On the distribution of chlorophyll in the young shoots of woody plants. Ann Bot 21:437–439Google Scholar
  123. Sitte P, Ziegler H, Ehrendorfer F, Bresinsky A (1998) Lehrbuch der Botanik für Hochschulen -Strasburger E, 34th edn. Fischer, StuttgartGoogle Scholar
  124. Solhaug KA, Gauslaa Y, Haugen J (1995) Adverse effects of epiphytic crustose lichens upon stem photosynthesis and chlorophyll of Populus tremula L. Bot Acta 108:233–239Google Scholar
  125. Sprugel DG, Benecke U (1991) Measuring woody-tissue respiration and photosynthesis. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches in forest tree ecophysiology. CRC, Boca Raton, pp 329–355Google Scholar
  126. Srivastava LM (1964) Anatomy, chemistry, and physiology of bark. Int Rev For Res 1:203–277Google Scholar
  127. Steinborn WH, Eschenbach C, Kutsch WL, Kappen L (1997) CO2-Gaswechsel von Achsenorganen der Schwarzerle (Alnus glutinosa). Landschaftsentwicklung und Umweltforschung 107, Schriftenreihe FB Umwelt und Gesellschaft. Overdiek D, Forstreuther M (eds): 7–22Google Scholar
  128. Stahl E (1912) Die Blitzgefährdung der verschiedenen Baumarten. Fischer, JenaGoogle Scholar
  129. Strain BR, Johnson PL (1963) Corticolar photosynthesis and growth on Populus tremuloides. Ecology 44:581–584Google Scholar
  130. Tranquillini W, Schütz W (1970) Über die Rindenatmung einiger Bäume an der Waldgrenze. Centralbl Ges Forstwes 87:42–60Google Scholar
  131. Trockenbrodt M (1990) Survey and discussion of the terminology used in bark anatomy. IAWA Bull 11:141–166Google Scholar
  132. Vaucher H (1990) Barks bibliography 1975–1990. BienneGoogle Scholar
  133. Von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387Google Scholar
  134. Wagner U (1990) Kinetik und Mechanismus der pH-Stabilisierung in grünen Blättern höherer Pflanzen. Thesis, University of Würzburg, WürzburgGoogle Scholar
  135. Waisel Y (1995) Development and functional aspects of the periderm. In: Iqbal M (ed) The cambial derivatives. Handbuch der Pflanzenanatomie IX, vol 4. Borntraeger, Berlin, pp 293–315Google Scholar
  136. Weber JA, Grulke NE (1995) Response of stem growth and function to air pollution. In: Gartner B (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, pp 343–363Google Scholar
  137. Wiebe HH (1975) Photosynthesis in wood. Physiol Plant 332:45–46Google Scholar
  138. Wiebe HH, Al-Saadi HA, Kimball SL (1974) Photosynthesis in the anomalous secondary wood of Atriplex confertifolia stems. Am J Bot 61:444–448Google Scholar
  139. Winter K (1985) Crassulacean acid metabolism. In: Barber J, Baker NR (eds) Photosynthetic mechanism and environment. Elsevier, Amsterdam, pp 321–387Google Scholar
  140. Wirth V (1995) Flechtenflora — Bestimmung und ökologische Kennzeichnung der Flechten Südwestdeutschlands und angrenzender Gebiete, 2nd edn. Ulmer, StuttgartGoogle Scholar
  141. Wutz A (1955) Anatomische Untersuchungen über System und periodische Veränderungen der Lenticellen. Bot Stud 4:43–72Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Hardy Pfanz
    • 1
  • Guido Aschan
    • 1
  1. 1.Institute of Applied BotanyUniversity of EssenEssenGermany

Personalised recommendations