Mutualistic Relationships Between Algae and Fungi (Excluding Lichens)

  • Hartmut Gimmler
Part of the Progress in Botany book series (BOTANY, volume 62)

Abstract

Mutualistic associations of microbes are widespread in nature, particularly in aquatic habitats. In such associations, two (or more) systematically distinct organisms mutually benefit from exchanges of food, protection, habitat or transport (Duchateau-Nguyen et al. 1995). The evolution of phototrophs featured the repeated emergence of mutualistic associations with fungi (Selosse and Le Tacon 1995). For example, Cyanophyta are involved in lichens, Rhodophyta and Chromophyta form some mycophycobioses, and Chlorophyta interacted during evolution repeatedly with fungi in the form of lichens or mycophycobioses. Interactions between fungi and green algae have already been described for the Devonian period (Taylor et al. 1992). Associations reach their highest level in the form of lichens or endosymbioses (Reisser 1992a; Hawksworth 1994; Kappen 1994). In lichens, unicellular algae (or cyanobacteria) are in direct contact with fungi. Both symbiotic partners form well-defined structural and functional units. The lichen lifestyle is found in various representatives of Dicaryomycotina. Analysis of small-subunit ribosomal DNA suggests at least five independent origins of lichens in distinct groups of Ascomycetes and Basidiomycetes (Gargas et al. 1995).

Keywords

Glycerol Respiration Bacillus Assimilation Flavonoid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadjian V (1992) Basic mechanisms of signal exchange, recognition and regulation in lichens. In: Reisser W (ed) Algae and symbiosis. Biopress Limited, Bristol, pp 675–698Google Scholar
  2. Albertano P, Pinto G, Santisi S, Taddei R (1981) Spermatozopssis acidophila Kalina (Chlorophyta, Volvocales), a little known alga from highly acidic environments. G Bot Ital 115:65–76Google Scholar
  3. Barnett JA, Pankhurst (1974) A new key to the yeasts. North-Holland, AmsterdamGoogle Scholar
  4. Bilger W, Biidel B, Mollenhauer R, Mollenhauer DJ (1994) Photosynthetic activity of two developmental stages of a Nostoc strain (Cyanobacteria) isolated from Geosiphon pyriforme (Mycota). J Phycol 30:225–230CrossRefGoogle Scholar
  5. Burgstaller W (1997) Transport of small ions and molecules through the plasma membrane of filamentous fungi. Crit Rev Microbiol 23:1–46PubMedCrossRefGoogle Scholar
  6. Carandang JSR, Gimmler H (1998) Vitamin uptake by the green algae Dunaliella acidophila. Manila J Sci 1:5–8Google Scholar
  7. Duchateau-Nguyen G, Weisbuch G, Peliti L (1995) A compartmental model of endosym-biosis. J Biol Syst 3:876–888CrossRefGoogle Scholar
  8. Fuggi A, Pinto G, Pollio A, Taddei R (1988) The role of glycerol in osmoregulation of the acidophilic alga Dunaliella acidophila (Volvocales, Chlorophyta). Effect of solute stress on photosynthesis, respiration and glycerol synthesis. Phycologia 27:439–446CrossRefGoogle Scholar
  9. Gargas A, DePriest PT, Grube M, Theler A (1995) Multiple origin of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268:1492–1495PubMedCrossRefGoogle Scholar
  10. Gehrig H, Schüssler A, Kluge M (1996) Geosiphon pyriforme, a fungus forming endocy-tobiosis with Nostoc (Cyanobacteria) is an ancestral member of the Glomales: evidences by SSU-rRNA analysis. J Mol Evol 43:71–81Google Scholar
  11. Gimmler H (2000) GABA and the acid resistance of the filamentous fungus Bispora sp. Manila J Sci 3 (in press)Google Scholar
  12. Gimmler H, Carandang JS (1998) Do vitamins play a role in commensalistic relationships between microorganisms coexisting in extremely acid habitats? Acta Manilana 46:1–7Google Scholar
  13. Gimmler H, Hartung W (1988) Low permeability of the plasma membranes of Dunaliella parva for solutes. J Plant Physiol 113:165–172CrossRefGoogle Scholar
  14. Gimmler H, Slovik S (1995) The mode of uptake of dissolved inorganic carbon in the extremely acid resistant green alga Dunaliella acidophila. Plant Physiol Biochem 33:655–664Google Scholar
  15. Gimmler H, Weis U (1992) Dunaliella acidophila — life at pH 1.0. In: Avron M, Ben Amotz A (eds) Dunaliella. Physiology, biochemistry and biotechnology. CRC, Boca Raton, pp 99–133Google Scholar
  16. Goff LJ (1983) Algal symbiosis. Cambridge University, CambridgeGoogle Scholar
  17. Hartung W, Gimmler H (1994) A stress physiological role for abscisic acid (ABA) in lower plants. Prog Bot 55:157–173CrossRefGoogle Scholar
  18. Hawksworth DL (1994) The recent evolution of lichenology: a science for our times. Cryptogam Bot 4:117–129Google Scholar
  19. Hawksworth DL, Rossman AL (1997) Where are all the undescribed fungi? Phytopathology 87:888–891PubMedCrossRefGoogle Scholar
  20. Hellebust JA (1974) Extracellular products. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell Scientific, Oxford, pp 838–862Google Scholar
  21. Hirsch R, Hartung W, Gimmler H (1989) Abscisic acid content of algae under stress. Bot Acta 102:326–334Google Scholar
  22. Honegger R (1997) In: Esser K, Lemke PA (eds) The Mycota, vol 5. Springer, Berlin Heidelberg New York, pp 209–221Google Scholar
  23. Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317CrossRefGoogle Scholar
  24. Johnson DB, Roberto FF (1997) In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes. Springer, Berlin Heidelberg New York, pp 259–280Google Scholar
  25. Jorgensen R (1993) The origin of land plants: a union of alga and fungus advanced by flavonoids? Biosystems 31:193–207PubMedCrossRefGoogle Scholar
  26. Kappen L (1994) The lichen, a mutualistic system: some mainly ecophysiologal aspects. Cryptogam Bot 4:193–202Google Scholar
  27. Kim JM, Cho IH, Park CU (1983) Microbiological study on the preservation of marine environments 1. Distribution of a vitamin B1, thiamin and biotin in the seawater of Kunsan, Korea. Bull Korean Fish Soc 16:25–30Google Scholar
  28. Kluge M, Mollenhauer D, Mollenhauer R (1991) Photosynthetic carbon assimilation in Geosiphon pyriforme Kutzing F. v. Wettstein, an endosymbiotic association of fungus and cyanobacterium. Planta 185:311–315CrossRefGoogle Scholar
  29. Kluge M, Mollenhauer D, Mollenhauer R, Kape R (1992) Geosiphon pyriforme, an endosymbiotic consortium of a fungus and a cyanobacterium (Nostoc), fixes nitrogen. Bot Acta 105:343–344Google Scholar
  30. Lane DJ, Harrison AP Jr, Stahl D, Pace B, Giovannis SJ, Olsen GJ, Pace NT (1992) J Bacteriol 174:269–278PubMedGoogle Scholar
  31. Lodder J (1970) The yeasts, a taxonomic study. North Holland, AmsterdamGoogle Scholar
  32. Mollenhauer D (1992) Geosiphon pyriforme. In: Reisser W (ed) Algae and symbiosis. Biopress Limited, Bristol, pp 339–351Google Scholar
  33. Nakatsu C, Hutchinson TC (1988) Extreme metal and acid tolerance of Euglena mutabilis and an associated yeast from Smoking Hills, Northwest Territories, and their apparent mutualism. Microb Ecol 16:213–232CrossRefGoogle Scholar
  34. Norris PR, Johnson DB (1998) Acidophilic microorganisms. In: Koriskoshi K, Grant WD (eds) Extremophiles: microbial life in extreme environments. Wiley, New York, pp 133–154Google Scholar
  35. Olaveson MM, Stokes PM (1989) Responses of the acidophilic alga Euglena mutabilis, (Euglenophyceae) to carbon enrichment at pH 3. J Phycol 35:529–539CrossRefGoogle Scholar
  36. Pearl H.W, Kellar PE (1978) Significance of bacterial Anaebaena (Cyanophyceae) associations with respect to nitrogen fixation in fresh water. J Phycol 14:254–260CrossRefGoogle Scholar
  37. Provasoli L, Carlucci AF (1974) Vitamins and growth regulators. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell Scientific, Oxford, pp 741–787Google Scholar
  38. Reisser W (ed) (1992a) Algae and symbiosis. Biopress Limited, BristolGoogle Scholar
  39. Reisser W (1992b) Basic mechanisms of signal exchange, recoognition, specificity, and regulation in endosymbiotic systems. In: Reisser W (ed) Algae and symbiosis. Biopress Limited, Bristol, pp 657–675Google Scholar
  40. Schnepf E (1964) Zur Feinstruktur von Geosiphon pyriforme. Arch Mikrobiol 49:112–131CrossRefGoogle Scholar
  41. Schüssler A, Mollenhauer D, Schnepf E, Kluge M (1994) Geosiphon pyriforme, an endosymbiotic association of fungus and Cyanobacteria: the spore structure resembles that of arbuscular mycorrhizal (AM) fungi. Bot Acta 107:36–45Google Scholar
  42. Schüssler A, Schnepf E, Mollenhauer D, Kluge M (1995) The fungal bladders of the endo-cyanosis Geosiphon pyriforme, a Glomus-related fungus: cell wall permeability indicates a limiting pore radius of only 0.5 nm. Protoplasma 185:131–139CrossRefGoogle Scholar
  43. Schüssler A, Bonfante P, Schnepf E, Mollenhauer D, Kluge M (1996) Characterization of the Geosiphon pyriforme symbiosome by affinity techniques: confocal laser scanning microscopy (CLSM) and electron microscopy. Protoplasma 190:53–67CrossRefGoogle Scholar
  44. Schüssler A, Meyer T, Gehrig H, Kluge M (1997) Variations of lectin binding sites in extracellular glycoconjugates during the life cycle of Nostoc punctiforme, a potentially endosymbiotic cyanobacterium. Eur J Phycol 32:233–239Google Scholar
  45. Selosse MA, Le Tacon F (1995) Mutualistic associations between photoptrophs and fungi: their diversity and role in land colonisation. Cryptogam Mycol 16:141–183Google Scholar
  46. Steinberg CEW, Bach S (1996) Growth promotion by a groundwater fulvic acid in a bacterial/algae system. Acta Hydrochim Hydrobiol 24:98–100CrossRefGoogle Scholar
  47. Strasser P, Falkner G (1986) Characterization of the glutamate-aspartate-transport system in a symbiotic Nostoc sp. Planta 168:381–385CrossRefGoogle Scholar
  48. Taylor TN, Hass H, Remy W (1992) Devonian fungi: interactions with the green alga Palaeonitella. Mycologia 84:901–910CrossRefGoogle Scholar
  49. Van Donk E, Bruning K (1992) Ecology of aquatic fungi in and on algae. In: Reisser W (ed) Algae and symbiosis. Biopress Limited, Bristol, pp 568–592Google Scholar
  50. Watanabe F, Nakano Y, Ochi H, Kitaoka S (1988) Purification, some properties and possible physiological role of an extracellular cobalamin binding protein from Euglena gracilis. J Gen Microbiol 134:1385–1390Google Scholar
  51. Weisbuch G, Duchateau G (1993) Emergence of mutualism: application of a differential model to endosymbiosis. Bull Math Biol 55:1063–1090Google Scholar
  52. Zenova GM, Bil KYA, Zakharchuk NE (1990) Specific functions of algae associated with bacteria. Vestn Moskovskogo Univ Ser 17 Pochvoved 2:53–59Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Hartmut Gimmler
    • 1
  1. 1.Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl Botanik IUniversität WürzburgWürzburgGermany

Personalised recommendations