Skip to main content

Mutualistic Relationships Between Algae and Fungi (Excluding Lichens)

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 62))

Abstract

Mutualistic associations of microbes are widespread in nature, particularly in aquatic habitats. In such associations, two (or more) systematically distinct organisms mutually benefit from exchanges of food, protection, habitat or transport (Duchateau-Nguyen et al. 1995). The evolution of phototrophs featured the repeated emergence of mutualistic associations with fungi (Selosse and Le Tacon 1995). For example, Cyanophyta are involved in lichens, Rhodophyta and Chromophyta form some mycophycobioses, and Chlorophyta interacted during evolution repeatedly with fungi in the form of lichens or mycophycobioses. Interactions between fungi and green algae have already been described for the Devonian period (Taylor et al. 1992). Associations reach their highest level in the form of lichens or endosymbioses (Reisser 1992a; Hawksworth 1994; Kappen 1994). In lichens, unicellular algae (or cyanobacteria) are in direct contact with fungi. Both symbiotic partners form well-defined structural and functional units. The lichen lifestyle is found in various representatives of Dicaryomycotina. Analysis of small-subunit ribosomal DNA suggests at least five independent origins of lichens in distinct groups of Ascomycetes and Basidiomycetes (Gargas et al. 1995).

“Where are all the undescribed fungi?”

Hawksworth and Rossman (1997)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmadjian V (1992) Basic mechanisms of signal exchange, recognition and regulation in lichens. In: Reisser W (ed) Algae and symbiosis. Biopress Limited, Bristol, pp 675–698

    Google Scholar 

  • Albertano P, Pinto G, Santisi S, Taddei R (1981) Spermatozopssis acidophila Kalina (Chlorophyta, Volvocales), a little known alga from highly acidic environments. G Bot Ital 115:65–76

    Google Scholar 

  • Barnett JA, Pankhurst (1974) A new key to the yeasts. North-Holland, Amsterdam

    Google Scholar 

  • Bilger W, Biidel B, Mollenhauer R, Mollenhauer DJ (1994) Photosynthetic activity of two developmental stages of a Nostoc strain (Cyanobacteria) isolated from Geosiphon pyriforme (Mycota). J Phycol 30:225–230

    Article  CAS  Google Scholar 

  • Burgstaller W (1997) Transport of small ions and molecules through the plasma membrane of filamentous fungi. Crit Rev Microbiol 23:1–46

    Article  PubMed  CAS  Google Scholar 

  • Carandang JSR, Gimmler H (1998) Vitamin uptake by the green algae Dunaliella acidophila. Manila J Sci 1:5–8

    Google Scholar 

  • Duchateau-Nguyen G, Weisbuch G, Peliti L (1995) A compartmental model of endosym-biosis. J Biol Syst 3:876–888

    Article  Google Scholar 

  • Fuggi A, Pinto G, Pollio A, Taddei R (1988) The role of glycerol in osmoregulation of the acidophilic alga Dunaliella acidophila (Volvocales, Chlorophyta). Effect of solute stress on photosynthesis, respiration and glycerol synthesis. Phycologia 27:439–446

    Article  Google Scholar 

  • Gargas A, DePriest PT, Grube M, Theler A (1995) Multiple origin of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268:1492–1495

    Article  PubMed  CAS  Google Scholar 

  • Gehrig H, Schüssler A, Kluge M (1996) Geosiphon pyriforme, a fungus forming endocy-tobiosis with Nostoc (Cyanobacteria) is an ancestral member of the Glomales: evidences by SSU-rRNA analysis. J Mol Evol 43:71–81

    Google Scholar 

  • Gimmler H (2000) GABA and the acid resistance of the filamentous fungus Bispora sp. Manila J Sci 3 (in press)

    Google Scholar 

  • Gimmler H, Carandang JS (1998) Do vitamins play a role in commensalistic relationships between microorganisms coexisting in extremely acid habitats? Acta Manilana 46:1–7

    Google Scholar 

  • Gimmler H, Hartung W (1988) Low permeability of the plasma membranes of Dunaliella parva for solutes. J Plant Physiol 113:165–172

    Article  Google Scholar 

  • Gimmler H, Slovik S (1995) The mode of uptake of dissolved inorganic carbon in the extremely acid resistant green alga Dunaliella acidophila. Plant Physiol Biochem 33:655–664

    CAS  Google Scholar 

  • Gimmler H, Weis U (1992) Dunaliella acidophila — life at pH 1.0. In: Avron M, Ben Amotz A (eds) Dunaliella. Physiology, biochemistry and biotechnology. CRC, Boca Raton, pp 99–133

    Google Scholar 

  • Goff LJ (1983) Algal symbiosis. Cambridge University, Cambridge

    Google Scholar 

  • Hartung W, Gimmler H (1994) A stress physiological role for abscisic acid (ABA) in lower plants. Prog Bot 55:157–173

    Article  CAS  Google Scholar 

  • Hawksworth DL (1994) The recent evolution of lichenology: a science for our times. Cryptogam Bot 4:117–129

    Google Scholar 

  • Hawksworth DL, Rossman AL (1997) Where are all the undescribed fungi? Phytopathology 87:888–891

    Article  PubMed  CAS  Google Scholar 

  • Hellebust JA (1974) Extracellular products. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell Scientific, Oxford, pp 838–862

    Google Scholar 

  • Hirsch R, Hartung W, Gimmler H (1989) Abscisic acid content of algae under stress. Bot Acta 102:326–334

    CAS  Google Scholar 

  • Honegger R (1997) In: Esser K, Lemke PA (eds) The Mycota, vol 5. Springer, Berlin Heidelberg New York, pp 209–221

    Google Scholar 

  • Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317

    Article  CAS  Google Scholar 

  • Johnson DB, Roberto FF (1997) In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes. Springer, Berlin Heidelberg New York, pp 259–280

    Google Scholar 

  • Jorgensen R (1993) The origin of land plants: a union of alga and fungus advanced by flavonoids? Biosystems 31:193–207

    Article  PubMed  CAS  Google Scholar 

  • Kappen L (1994) The lichen, a mutualistic system: some mainly ecophysiologal aspects. Cryptogam Bot 4:193–202

    Google Scholar 

  • Kim JM, Cho IH, Park CU (1983) Microbiological study on the preservation of marine environments 1. Distribution of a vitamin B1, thiamin and biotin in the seawater of Kunsan, Korea. Bull Korean Fish Soc 16:25–30

    Google Scholar 

  • Kluge M, Mollenhauer D, Mollenhauer R (1991) Photosynthetic carbon assimilation in Geosiphon pyriforme Kutzing F. v. Wettstein, an endosymbiotic association of fungus and cyanobacterium. Planta 185:311–315

    Article  CAS  Google Scholar 

  • Kluge M, Mollenhauer D, Mollenhauer R, Kape R (1992) Geosiphon pyriforme, an endosymbiotic consortium of a fungus and a cyanobacterium (Nostoc), fixes nitrogen. Bot Acta 105:343–344

    Google Scholar 

  • Lane DJ, Harrison AP Jr, Stahl D, Pace B, Giovannis SJ, Olsen GJ, Pace NT (1992) J Bacteriol 174:269–278

    PubMed  CAS  Google Scholar 

  • Lodder J (1970) The yeasts, a taxonomic study. North Holland, Amsterdam

    Google Scholar 

  • Mollenhauer D (1992) Geosiphon pyriforme. In: Reisser W (ed) Algae and symbiosis. Biopress Limited, Bristol, pp 339–351

    Google Scholar 

  • Nakatsu C, Hutchinson TC (1988) Extreme metal and acid tolerance of Euglena mutabilis and an associated yeast from Smoking Hills, Northwest Territories, and their apparent mutualism. Microb Ecol 16:213–232

    Article  CAS  Google Scholar 

  • Norris PR, Johnson DB (1998) Acidophilic microorganisms. In: Koriskoshi K, Grant WD (eds) Extremophiles: microbial life in extreme environments. Wiley, New York, pp 133–154

    Google Scholar 

  • Olaveson MM, Stokes PM (1989) Responses of the acidophilic alga Euglena mutabilis, (Euglenophyceae) to carbon enrichment at pH 3. J Phycol 35:529–539

    Article  Google Scholar 

  • Pearl H.W, Kellar PE (1978) Significance of bacterial Anaebaena (Cyanophyceae) associations with respect to nitrogen fixation in fresh water. J Phycol 14:254–260

    Article  Google Scholar 

  • Provasoli L, Carlucci AF (1974) Vitamins and growth regulators. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell Scientific, Oxford, pp 741–787

    Google Scholar 

  • Reisser W (ed) (1992a) Algae and symbiosis. Biopress Limited, Bristol

    Google Scholar 

  • Reisser W (1992b) Basic mechanisms of signal exchange, recoognition, specificity, and regulation in endosymbiotic systems. In: Reisser W (ed) Algae and symbiosis. Biopress Limited, Bristol, pp 657–675

    Google Scholar 

  • Schnepf E (1964) Zur Feinstruktur von Geosiphon pyriforme. Arch Mikrobiol 49:112–131

    Article  Google Scholar 

  • Schüssler A, Mollenhauer D, Schnepf E, Kluge M (1994) Geosiphon pyriforme, an endosymbiotic association of fungus and Cyanobacteria: the spore structure resembles that of arbuscular mycorrhizal (AM) fungi. Bot Acta 107:36–45

    Google Scholar 

  • Schüssler A, Schnepf E, Mollenhauer D, Kluge M (1995) The fungal bladders of the endo-cyanosis Geosiphon pyriforme, a Glomus-related fungus: cell wall permeability indicates a limiting pore radius of only 0.5 nm. Protoplasma 185:131–139

    Article  Google Scholar 

  • Schüssler A, Bonfante P, Schnepf E, Mollenhauer D, Kluge M (1996) Characterization of the Geosiphon pyriforme symbiosome by affinity techniques: confocal laser scanning microscopy (CLSM) and electron microscopy. Protoplasma 190:53–67

    Article  Google Scholar 

  • Schüssler A, Meyer T, Gehrig H, Kluge M (1997) Variations of lectin binding sites in extracellular glycoconjugates during the life cycle of Nostoc punctiforme, a potentially endosymbiotic cyanobacterium. Eur J Phycol 32:233–239

    Google Scholar 

  • Selosse MA, Le Tacon F (1995) Mutualistic associations between photoptrophs and fungi: their diversity and role in land colonisation. Cryptogam Mycol 16:141–183

    Google Scholar 

  • Steinberg CEW, Bach S (1996) Growth promotion by a groundwater fulvic acid in a bacterial/algae system. Acta Hydrochim Hydrobiol 24:98–100

    Article  CAS  Google Scholar 

  • Strasser P, Falkner G (1986) Characterization of the glutamate-aspartate-transport system in a symbiotic Nostoc sp. Planta 168:381–385

    Article  CAS  Google Scholar 

  • Taylor TN, Hass H, Remy W (1992) Devonian fungi: interactions with the green alga Palaeonitella. Mycologia 84:901–910

    Article  Google Scholar 

  • Van Donk E, Bruning K (1992) Ecology of aquatic fungi in and on algae. In: Reisser W (ed) Algae and symbiosis. Biopress Limited, Bristol, pp 568–592

    Google Scholar 

  • Watanabe F, Nakano Y, Ochi H, Kitaoka S (1988) Purification, some properties and possible physiological role of an extracellular cobalamin binding protein from Euglena gracilis. J Gen Microbiol 134:1385–1390

    CAS  Google Scholar 

  • Weisbuch G, Duchateau G (1993) Emergence of mutualism: application of a differential model to endosymbiosis. Bull Math Biol 55:1063–1090

    Google Scholar 

  • Zenova GM, Bil KYA, Zakharchuk NE (1990) Specific functions of algae associated with bacteria. Vestn Moskovskogo Univ Ser 17 Pochvoved 2:53–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gimmler, H. (2001). Mutualistic Relationships Between Algae and Fungi (Excluding Lichens). In: Esser, K., Lüttge, U., Kadereit, J.W., Beyschlag, W. (eds) Progress in Botany. Progress in Botany, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56849-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56849-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52378-6

  • Online ISBN: 978-3-642-56849-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics