Skip to main content

Allosteric Modulation of GABAA Receptor Function by General Anesthetics and Alcohols

  • Chapter
Pharmacology of GABA and Glycine Neurotransmission

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 150))

  • 298 Accesses

Abstract

Since their introduction into clinical practice nearly 150 years ago, general anesthetics have become some of the most widely used and important therapeutic agents. Alcohol, specifically ethanol, is arguably the most important non-prescription drug in most Western countries. Despite over a century of research, the molecular mechanisms of action of general anesthetics and alcohols in the central nervous system (CNS) have remained elusive. Ligand-gated ion channels have emerged as promising molecular targets to mediate the CNS effects of both classes of drug. In this review, we aim to describe the actions of general anesthetics and alcohols on γ-aminobutyric acidA (GABAA) receptors. We will begin by summarizing the chemical classes of anesthetics. We will briefly examine contemporary experimental methodology and review the pharmacological criteria that can help define proteins that represent plausible molecular targets for general anesthetics and alcohols. We will then describe the actions of these agents on the GABAA receptors. The last decade has witnessed an explosion of such studies, and we will focus in particular on recent work which utilizes recombinant chimeric and mutated receptors to identify regions of the GABAA receptors that are important for the modulatory actions of general anesthetics and alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adodra S, Hales TG (1995) Potentiation, activation and blockade of GABAA receptors of clonal murine hypothalamic GT1-7 neurones by propofol. Br J Pharmacol 115:953–960

    PubMed  CAS  Google Scholar 

  • Aguayo, LG, Pancetti FC (1994) Ethanol modulation of the γ-aminobutyric acidA- and glycine-activated CI current in cultured mouse neurons. J Pharmacol Exp Ther 270:61–69

    PubMed  CAS  Google Scholar 

  • Akabas MH, Kaufmann C, Archdeacon P, Karlin A (1994) Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the α subunit. Neuron 13:919–927

    PubMed  CAS  Google Scholar 

  • Alifimoff JK, Firestone LL, Miller KW (1989) Anaesthetic potencies of primary alkanols: implications for the molecular dimensions of the anaesthetic site. Br J Pharmacol 96:9–16

    PubMed  CAS  Google Scholar 

  • Allan AM, Harris RA (1986) Gamma-aminobutyric acid and alcohol actions: Neurochemical studies of long sleep and short sleep mice. Life Sci 39:2005–2015

    PubMed  CAS  Google Scholar 

  • Amin J, Weiss DS (1993) GABAA receptor needs two homologous domains of the ß-subunit for activation by GABA but not by pentobarbital. Nature 366:565–569

    PubMed  CAS  Google Scholar 

  • Andrews PR, Mark LC (1982) Structural specificity of barbiturates and related drugs. Anesthesiol 57:314–320

    CAS  Google Scholar 

  • Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79:565–575

    PubMed  CAS  Google Scholar 

  • Antognini JF, Schwartz K (1993) Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiol 79:1244–1249

    CAS  Google Scholar 

  • Atkinson RM, Davis B, Pratt MA, Sharpe HM, Tomich EG (1965) Action of some steroids on the central nervous system of the mouse. J Med Chem 8:426–432

    PubMed  CAS  Google Scholar 

  • Banks MI, Pearce RA (1999) Dual actions of volatile anesthetics on GABAA IPSCs: dissociation of blocking and prolonging effects. Anesthesiol 90:120–134

    CAS  Google Scholar 

  • Barker JL, Ransom BR (1978) Pentobarbitone pharmacology of mammalian central neurones grown in tissue culture. J Physiol 280:355–372

    PubMed  CAS  Google Scholar 

  • Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) International union of pharmacology XV. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–313

    PubMed  CAS  Google Scholar 

  • Belelli D, Callachan H, Hill-Venning C, Peters JA, Lambert JJ (1996) Interaction of positive allosteric modulators with human and Drosophila recombinant GABA receptors expressed in Xenopus laevis oocytes. Br J Pharmacol 118:563–576

    PubMed  CAS  Google Scholar 

  • Belelli D, Lambert JJ, Peters JA, Wafford K, Whiting PJ (1997) The interaction of the general anesthetic etomidate with the γ-aminobutyric acid type A receptor is influenced by a single amino acid. Proc Natl Acad Sci USA 94:11031–11036

    PubMed  CAS  Google Scholar 

  • Betz H (1991) Glycine receptors: heterogeneous and widespread in the mammalian brain. Trends Neurosci 14:458–461

    PubMed  CAS  Google Scholar 

  • Betz H (1992) Structure and function of inhibitory glycine receptors. Q Rev Biophys 25:381–394

    PubMed  CAS  Google Scholar 

  • Birnir B,Tierney ML, Dalziel JE, Cox GB, Gage PW (1997) A structural determinant of desensitization and allosteric regulation by pentobarbital of the GABAA receptor. J Membrane Biol 155:157–166

    CAS  Google Scholar 

  • Bloom FE, Iversen LL (1971) Localizing [3H]GABA in nerve terminals of cerebral cortex by electron microscopic autoradiography. Nature 229:628–630

    PubMed  CAS  Google Scholar 

  • Callachan H, Cottrell GA, Hather NY, Lambert JJ, Nooney JM, Peters JA (1987) Modulation of the GABAA receptor by progesterone metabolites. Proc R Soc Lond ser B Biol Sci 231:359–369

    CAS  Google Scholar 

  • Celentano JJ, Gibbs TT, Farb DH (1988) Ethanol potentiates GABA- and glycine-induced chloride currents in chick spinal cord neurons. Brain Res 455:377–380

    PubMed  CAS  Google Scholar 

  • Chang Y, Wang R, Barot S, Weiss DS (1996) Stoichiometry of a recombinant GABAA receptor. J Neurosci 16:5415–5424

    PubMed  CAS  Google Scholar 

  • Chortkoff BS, Eger EI, Crankshaw DP, Gonsowski CT, Dutton RC, Ionescu P (1995a) Concentrations of desflurane and propofol that suppress response to command in humans. Anesth Analg 81:737–743

    PubMed  CAS  Google Scholar 

  • Chortkoff BS, Gonsowski CT, Bennett HL, Levinson B, Crankshaw DP, Dutton RC, Ionescu P, Block RI, Eger EI (1995b) Subanesthetic concentrations of desflurane and propofol suppress recall of emotionally charged information. Anesth Analg 81:728–736

    PubMed  CAS  Google Scholar 

  • Cohen ML, Chan SL, Way WL, Trevor AJ (1973) Distribution in the brain and metabolism of ketamine in the rat after intravenous administration. Anesthesiol 39:370–376

    CAS  Google Scholar 

  • Collins JF, Kendig JJ, Mason P (1995) Anesthetic actions within the spinal cord: contributions to the state of general anesthesia. Trends In Neurosciences 18:549–553

    PubMed  CAS  Google Scholar 

  • Cooper E, Couturier S, Ballivet M (1991) Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor Nature 350:235–238

    CAS  Google Scholar 

  • Cottrell GA, Lambert JJ, Peters JA (1987) Modulation of GABAA receptor activity by alphaxalone. Br J Pharmacol 90:491–500

    PubMed  CAS  Google Scholar 

  • Cutting GR, Curristin S, Zoghbi H, O’Hara B, Seldin MF, Uhl GR (1992) Identification of a putative γ-aminobutyric acid (GABA) receptor subunit rho2 cDNA and colocalization of the genes encoding rho2 (GABRR2) and rho1 (GABRR1) to human chromosome 6ql4-q21 and mouse chromosome 4. Genomics 12:801–806

    PubMed  CAS  Google Scholar 

  • Cutting GR, Lu L, O’Hara BF, Kasch LM, Montrose-Rafizadeh C, Donovan DM, Shimada S, Antonarakis SE, Guggino WB, Uhl GR, Kazazian HH (1991) Cloning of the γ-aminobutyric acid (GABA) rho 1 cDNA: a GABA receptor subunit highly expressed in the retina. Proc Natl Acad Sci USA 88:2673–2677

    PubMed  CAS  Google Scholar 

  • Davidoff RA (1973) Alcohol and presynaptic inhibition in an isolated spinal cord. Arch Neurol 28:60–63

    PubMed  CAS  Google Scholar 

  • Davies PA, Hanna MC, Hales TG, Kirkness EF (1997) Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit. Nature 385:820–823

    PubMed  CAS  Google Scholar 

  • Deitrich RA, Dunwiddie TV, Harris RA, Erwin VG (1989) Mechanism of action of ethanol: initial central nervous system actions. Pharmacol Reviews 41:491–537

    Google Scholar 

  • Deitrich RA, Harris RA (1996) How much alcohol should I use in my experiments? Alcohol Clin Exp Res 20:1–2

    PubMed  CAS  Google Scholar 

  • DeLorey TM, Handforth A, Anagnostaras SG, Homanics GE, Minassian BA, Asatourian A, Fanselow MS, Delgado-Escueta A, Ellison GD, Olsen RW (1998) Mice lacking the ß 3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman Syndrome. J Neurosci 18:8505–8514

    PubMed  CAS  Google Scholar 

  • Dickinson R, Franks NP, Lieb WR (1994) Can the stereoselective effects of the anesthetic isoflurane be accounted for by lipid solubility? Biophys J 66:2019–2023

    PubMed  CAS  Google Scholar 

  • Dildy-Mayfield JE, Mihic SJ, Liu Y, Deitrich RA, Harris RA (1996) Actions of long chain alcohols on GABAA and glutamate receptors: relation to in vivo effects. Br J Pharmacol 118:378–384

    PubMed  CAS  Google Scholar 

  • Downie DL, Hall AC, Lieb WR, Franks NP (1996) Effects of inhalational general anaesthetics on native glycine receptors in rat medullary neurones and recombinant glycine receptors in Xenopus oocytes. Br J Pharmacol 118:493–502

    PubMed  CAS  Google Scholar 

  • Draski LJ, Deitrich RA (1995) Initial effects of ethanol on the central nervous system In: Deitrich, RA, Erwin, VG (eds) Pharmacological effects of ethanol on the nervous system. CRC Press, Boca Raton, FL, pp 227–250

    Google Scholar 

  • Dzoljic M, Van Dujin B (1998) Nitrous oxide-induced enhancement of γ-aminobutyric acidA-mediated chloride currents in acutely dissociated hippocampal neurons. Anesthesiol 88:473–480

    CAS  Google Scholar 

  • Ebert B, Wafford KA, Whiting PJ, Krogsgaard-Larsen P, Kemp JA (1994) Molecular pharmacology of γ-aminobutyric acid type A receptor agonists and partial agonistsnists in oocytes injected with different α, ß, and γ receptor subunit combinations. Mol Pharmacol 46:957–963

    PubMed  CAS  Google Scholar 

  • Eccles JC, Malcolm JL (1946) Dorsal root potentials of the spinal cord. J Neurophysiol 9:139–160

    PubMed  CAS  Google Scholar 

  • Eccles JC, Schmidt R, Willis WD (1963) Pharmacological studies on presynaptic inhibition. J Physiol 168:500–530

    PubMed  CAS  Google Scholar 

  • Eckenhoff RG (1996) An inhalational anesthetic binding domain in the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 93:2807–2810

    PubMed  CAS  Google Scholar 

  • Eger EI, Koblin DD, Laster MJ, Schurig V, Juza M, Ionescu P, Gong D (1997) Minimum alveolar anesthetic concentration values for the enantiomers of isoflurane differ minimally. Anesth Analg 85:188–192

    PubMed  CAS  Google Scholar 

  • Eger EI, Saidman LJ, Brandstater B (1965) Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiol 26:756–763

    Google Scholar 

  • Engblom AC, Akerman KEO (1991) Effect of ethanol on α-aminobutyric acid and glycine receptor-coupled CI fluxes in rat brain synaptoneurosomes. J Neurochem 57:384–390

    PubMed  CAS  Google Scholar 

  • Franks NP, Dickinson R, de Sousa SLM, Hall AC, Lieb WR (1998) How does xenon produce anaesthesia? Nature 396:324

    PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1984) Do general anaesthetics act by competitive binding to specific receptors? Nature 310:599–601

    PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367:607–614

    PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1986) Partitioning of long-chain alcohols into lipid bilayers: implications for mechanisms of general anesthesia. Proc Natl Acad Sci USA 83:5116–5120

    PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1993) Selective actions of volatile general anaesthetics at molecular and cellular levels. Br J Anaesth 71:65–76

    PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1996a) An anesthetic-sensitive superfamily of neurotransmittergated ion channels. J Clin Anesth 8:3S–7S

    PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1996b) Temperature dependence of the potency of volatile general anesthetics: implications for in vitro experiments. Anesthesiol 84:716–720

    CAS  Google Scholar 

  • Fritschy JM, Mohler H (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194

    PubMed  CAS  Google Scholar 

  • Gunther U, Benson J, Benke D, Fritschy JM, Reyes G, Knoflach F, Crestani F, Aguzzi A, Arigoni M, Lang Y, Bluethmann H, Mohler H, Luscher B (1995) Benzodiazepine-insensitive. mice generated by targeted disruption of the γ2 subunit gene of γ-aminobutyric acid type A receptors. Proc Natl Acad Sci USA 92:7749–7753

    PubMed  CAS  Google Scholar 

  • Gurley D,Amin J, Ross PC, Weiss DS, White G (1995) Point mutations in the M2 region of the α, ß, or γ subunit of the GABAA channel that abolish block by picrotoxin. Receptors Channels 3:13–20

    PubMed  CAS  Google Scholar 

  • Hackam AS, Wang TL, Guggino WB, Cutting GR (1998) Sequences in the amino termini of GABA ρ and GABAA subunits specify their selective interaction in vitro. J Neurochem 70:40–46

    PubMed  CAS  Google Scholar 

  • Hadingham KL, Wingrove P, Le Bourdelles B, Palmer KJ, Ragan CI, Whiting PJ (1993a) Cloning of cDNA sequences encoding human α2 and α3 γ-aminobutyric acidA receptor subunits and characterization of the benzodiazepine pharmacology of recombinant αl-, α2-, α3-, and α5-containing human γ-aminobutyric acidA receptors. Mol Pharmacol 43:970–975

    PubMed  CAS  Google Scholar 

  • Hadingham KL, Wingrove PB, Wafford KA, Bain C, Kemp JA, Palmer KJ, Wilson AW, Wilcox AS, Sikela JM, Ragan CI, Whiting PJ (1993b) Role of the ß subunit in determining the pharmacology of human γ-aminobutyric acid type A receptors. Mol Pharmacol 44:1211–1218

    PubMed  CAS  Google Scholar 

  • Hales TG, Lambert JJ (1991) The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br J Pharmacol 104:619–628

    PubMed  CAS  Google Scholar 

  • Hall AC, Lieb WR, Franks NP (1994) Stereoselective and non-stereoselective actions of isoflurane on the GABAA receptor. Br J Pharmacol 112:906–910

    PubMed  CAS  Google Scholar 

  • Hara M, Kai Y, Ikemoto Y (1993) Propofol activates GABAA receptor-chloride ionophore complex in dissociated hippocampal pyramidal neurons of the rat. Anesthesiol 79:781–788

    CAS  Google Scholar 

  • Harris B, Moody E, Skolnick P (1992) Isoflurane anesthesia is stereoselective. Eur J Pharmacol 217:215–216

    PubMed  CAS  Google Scholar 

  • Harris BD, Wong G, Moody EJ, Skolnick P (1995a) Different subunit requirements for volatile and nonvolatile anesthetics at γ-aminobutyric acid type A receptors. Mol Pharmacol 47:363–367

    PubMed  CAS  Google Scholar 

  • Harris RA, Mihic SJ, Dildy-Mayfield JE, Machu TK (1995b) Actions of anesthetics on ligand-gated ion channels: role of receptor subunit composition. FASEB J 9:1454–1462

    PubMed  CAS  Google Scholar 

  • Harris RA, McQuilkin SJ, Paylor R, Abeliovich A, Tonegawa S, Wehner JM (1995c) Mutant mice lacking the isoform of protein kinase C show decreased behavioral actions of ethanol and altered function of γ-aminobutyrate type A receptors. Proc Natl Acad Sci USA 92:3658–3662

    PubMed  CAS  Google Scholar 

  • Harrison, NL (1998) Optical isomers open a new window on anesthetic mechanism. Anesthesiol 88:566–568

    CAS  Google Scholar 

  • Harrison NL, Flood P (1998) Molecular mechanisms of general anesthetic action. Sci Med 5:18–27

    CAS  Google Scholar 

  • Harrison NL, Simmonds MA (1984) Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 323:287–292

    PubMed  CAS  Google Scholar 

  • Harrison NL, Majewska MD, Harrington JW, Barker JL (1987a) Structure-activity relationships for steroid interaction with the γ-aminobutyric acidA receptor complex. J Pharmacol Exp Ther 241:346–353

    PubMed  CAS  Google Scholar 

  • Harrison NL, Vicini S, Barker JL (1987b) A steroid anesthetic prolongs inhibitory postsynaptic currents in cultured rat hippocampal neurons. J Neurosci, 7:604–609

    PubMed  CAS  Google Scholar 

  • Hedblom E, Kirkness EF (1997) A novel class of GABAA receptor subunit in tissues of the reproductive system. J Biol Chem 272:15346–15350

    PubMed  CAS  Google Scholar 

  • Heykants JJ, Meuldermans WE, Michiels LJ, Lewi PJ, Janssen PA (1975) Distribution, metabolism and excretion of etomidate, a short-acting hypnotic drug, in the rat. Comparative study of (R)-(+) and S-(-)-etomidate. Arch Intl Pharmacodyn Ther 216:113–129

    CAS  Google Scholar 

  • Hill-Venning C, Belelli D, Peters JA, Lambert JJ (1997) Subunit-dependent interaction of the general anaesthetic etomidate with the γ-aminobutyric acid type A receptor. Br J Pharmacol 120:749–756

    PubMed  CAS  Google Scholar 

  • Homanics GE, DeLorey TM, Firestone LL, Quinlan JJ, Handforth A, Harrison NL, Krasowski MD, Rick CEM, Korpi ER, Makela R, Brilliant MH, Hagiwara N, Ferguson C, Snyder K, Olsen RW (1997) Mice devoid of γ-aminobutyric type A receptor ß3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci USA 94:4143–4148

    PubMed  CAS  Google Scholar 

  • Homanics GE, Quinlan JJ, Mihalek RM, Firestone LL (1998) Alcohol and anesthetic mechanisms in genetically engineered mice. Front Biosci 3:D548–D558

    PubMed  CAS  Google Scholar 

  • Horenstein J, Akabas MH (1998) Location of a high affinity Zn2+ binding site in the channel of α1ß1 GABAA receptors. Mol Pharmacol 53:870–877

    PubMed  CAS  Google Scholar 

  • Hu Y, Zorumski CF, Covey DF (1993) Neurosteroid analogues: structure-activity studies of benz[e]indene modulators of GABAA receptor function. 1 The effect of 6-methyl substitution on the electrophysiological activity of 7-substituted benz[e]indene-3-carbonitriles. J Med Chem 36:3956–3967

    PubMed  CAS  Google Scholar 

  • Huang LY, Barker JL (1980) Pentobarbital: stereospecific actions of (+) and (-) isomers revealed on cultured mammalian neurons. Science 207:195–197

    PubMed  CAS  Google Scholar 

  • Iselin-Chaves IA, Flaishon R, Sebel PS, Howell S, Gan TJ, Sigl J, Ginsberg B, Glass PSA (1998) The effect of the interaction of propofol and alfentanil on recall, loss of consciousness, and the bispectral index. Anesth Analg 87:949–955

    PubMed  CAS  Google Scholar 

  • Jevtovic-Todorovic V,Todorovic SM, Mennerick S, Powell S, Dikranian K, Benshoff N, Zorumski CF, Olney JW (1998) Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant, and neurotoxin. Nature Med 4:460–463

    PubMed  CAS  Google Scholar 

  • Johnston GA (1996) GABAC receptors: relatively simple transmitter-gated ion channels? Trends Pharmacol Sci 17:319–323

    PubMed  CAS  Google Scholar 

  • Jones MV, Harrison NL (1993) Effects of volatile anesthetics on the kinetics of inhibitory postsynaptic currents in cultured rat hippocampal neurons. J Neurophysiol 70:339–1349

    Google Scholar 

  • Jones MV, Harrison NL, Pritchett DB, Hales TG (1995) Modulation of the GABAA receptor by propofol is independent of the γsubunit. J Pharmacol Exp Ther 274:962–968

    PubMed  CAS  Google Scholar 

  • Kandel L, Chortkoff BS, Sonner J, Laster MJ, Eger EI (1996) Nonanesthetics can suppress learning. Anesth Analg 82:321–326

    PubMed  CAS  Google Scholar 

  • Koblin DD, Chortkoff BS, Laster MJ, Eger EI Halsey, MJ Ionescu P (1994) Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesth Analg 79:1043–1048

    PubMed  CAS  Google Scholar 

  • Koltchine VV, Ye Q, Finn SE, Harrison NL (1996) Chimeric GABAA/glycine receptors: expression and barbiturate pharmacology. Neuropharmacol, 35:1445–1456

    CAS  Google Scholar 

  • Koob GF (1995) The neuropharmacology of ethanol’s behavioral action: new data, new paradigms, new hope. In: Deitrich RA, Erwin VG (eds) Pharmacological effects of ethanol on the nervous system. CRC Press, Boca Raton, FL, pp 1–12

    Google Scholar 

  • Krasowski MD, Finn SE, Ye Q, Harrison NL (1998a) Trichloroethanol modulation of recombinant GABAA, glycine, and GABA r1 receptors. J Pharmacol Exp Ther 284:934–942

    PubMed  CAS  Google Scholar 

  • Krasowski MD, Koltchine VV, Rick CE, Ye Q, Finn SE, Harrison NL (1998b) Propofol and other intravenous anesthetics have sites of action on the γ-aminobutyric acidA receptor distinct from that for isoflurane. Mol Pharmacol 53:530–538

    PubMed  CAS  Google Scholar 

  • Krasowski MD, O’Shea SM, Rick CEM, Whiting PJ, Hadingham KL, Czajkowski C, Harrison NL (1997) α subunit isoform influences GABAA receptor modulation by propofol. Neuropharmacol 36:941–949

    CAS  Google Scholar 

  • Krasowski MD, Harrison NL (1999) General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci 55:1278–1303

    PubMed  CAS  Google Scholar 

  • Kuhse J, Betz H, Kirsch J (1995) The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Curr Opin Neurobiol 5:318–323

    PubMed  CAS  Google Scholar 

  • Lakhlani PP, MacMillan LB, Guo TZ, McCool BA, Lovinger DM, Maze M, Limbird LE (1997) Substitution of a mutant α 2a-adrenergic receptor via „hit and run“ gene targeting reveals the role of this subtype in sedative, analgesic, and anestheticsparing responses in vivo. Proc Natl Acad Sci USA 94:9950–9955

    PubMed  CAS  Google Scholar 

  • Lambert JJ, Belelli D, Hill-Venning C, Callachan H, Peters JA (1996) Neurosteroid modulation of native and recombinant GABAA receptors. Cell Mol Neurobiol 16:155–174

    PubMed  CAS  Google Scholar 

  • Lambert JJ, Belelli D, Hill-Venning C, Peters JA (1995) Neurosteroids and GABAA receptor function. Trends Pharmacol Sci 16:295–303

    PubMed  CAS  Google Scholar 

  • Langosch D, Thomas L, Betz H (1988) Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci USA 85:7394–7398

    PubMed  CAS  Google Scholar 

  • Lavoie AM,Tingey JJ, Harrison NL, Pritchett DB,Twyman RE (1997) Activation and deactivation rates of recombinant GABAA receptor channels are dependent on α-subunit isoform. Biophys J 73:2518–2526

    PubMed  CAS  Google Scholar 

  • Levitan ES, Blair LA, Dionne VE, Barnard EA (1988) Biophysical and pharmacological properties of cloned GABAA receptor subunits expressed in Xenopus oocytes. Neuron 1:773–781

    PubMed  CAS  Google Scholar 

  • Lodge D, Anis NA, Burton NR (1982) Effects of optical isomers of ketamine on excitation of cat and rat spinal neurones by amino acids and acetylcholine. Neurosci Lett 29:281–286

    PubMed  CAS  Google Scholar 

  • Lovinger DM (1997) Alcohols and neurotransmitter gated ion channels: past, present and future. Naunyn-Schmiedebergs Arch Pharmacol 356:267–282

    PubMed  CAS  Google Scholar 

  • Lu L, Huang Y (1998) Separate domains for desensitization of GABA ρ 1 and ß 2 subunits expressed in Xenopus oocytes. J Membrane Biol 164:115–124

    CAS  Google Scholar 

  • Lyon RC, McComb JA, Schreurs J, Goldstein DB (1981) A relationship between alcohol intoxication and the disordering of brain membranes by a series of shortchain alcohols. J Pharmacol Exp Ther 218:669–675

    PubMed  CAS  Google Scholar 

  • Lysko GS Robinson JL, Casto R, Ferrone RA (1994) The stereospecific effects of isoflurane isomers in vivo. Eur J Pharmacol 263:25–29

    Google Scholar 

  • Macdonald RL, Olsen RW (1994) GABAA receptor channels. Annu Rev Neurosci 17:569–602

    PubMed  CAS  Google Scholar 

  • Maclver MB, Tanelian DL, Mody I (1991) Two mechanisms for anesthetic-induced enhancement of GABAA-mediated neuronal inhibition. Ann NY Acad Sci 625:91–96

    Google Scholar 

  • Marshall BE, Longnecker DE (1996) General anesthetics In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Gilman AG (eds) The pharmacological basis of therapeutics. McGraw-Hill, New York, pp 307–330

    Google Scholar 

  • Martz A, Deitrich RA, Harris RA Behavioral evidence for the involvement of γ-aminobutyric acid in the actions of ethanol. Eur J Pharmacol 89:53–62

    Google Scholar 

  • Mascia MP, MachuTK, Harris RA (1996) Enhancement of homomeric glycine re-ceptor function by long-chain alcohols and anaesthetics. Br J Pharmacol 119:1331–1336

    PubMed  CAS  Google Scholar 

  • Mascia MP, Wick MJ, Martinez LD, Harris RA (1998) Enhancement of glycine receptor function by ethanol: role of phosphorylation. Br J Pharmacol 125:263–270

    PubMed  CAS  Google Scholar 

  • McCormick DA (1989) GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol 62:1018–1027

    PubMed  CAS  Google Scholar 

  • McCreery MJ, Hunt WA (1978) Physico-chemical correlates of alcohol intoxication. Neuropharmacol 17:451–461

    CAS  Google Scholar 

  • McGurk KA, Pistis M, Belelli D, Hope AG, Lambert JJ (1998) The effect of a transmembrane amino acid on etomidate sensitivity of an invertebrate GABA receptor. Br J Pharmacol 124:13–20

    PubMed  CAS  Google Scholar 

  • McKernan RM, Farrar S, Collins I, Emms F, Asuni A, Quirk K, Broughton H (1998) Photoaffinity labeling of the benzodiazepine binding site of α1ß3γ2 γ-aminobutyric acidA receptors with flunitrazepam identifies a subset of ligands that interact directly with Hisl02 of the a subunit and predicts orientation of these within the benzodiazepine pharmacophore. Mol Pharmacol 54:33–43

    PubMed  CAS  Google Scholar 

  • McKernan RM, Whiting PJ (1996) Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci 19:139–143

    PubMed  CAS  Google Scholar 

  • McKernan RM et al. (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA-A receptor alpha-1 subtype. Nature Neurosci 3: 587–592

    PubMed  CAS  Google Scholar 

  • Mennerick S, Jevtovic-Todorovic V, Todorovic SM, Shen WX, Olney JW, Zorumski CF (1998) Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 18:9716–9726

    PubMed  CAS  Google Scholar 

  • Meyer H (1899) Welche Eigenschaft der Anasthetica bedingt ihre narkotische Wirkung? Naunyn-Schmiedebergs Arch Exp Path Pharmakol 42:109–118

    Google Scholar 

  • Meyer H (1901) Zur Theorie der Alkolnarkose: der Einfluss wechselnder Temperatur auf Wirkungsstarke und Theilungscoefficient der Narcotica. Naunyn-Schmiedebergs Arch Exp Path Pharmakol 46:338–346

    Google Scholar 

  • Meyer KH (1937) Contribution to the theory of narcosis. Trans Faraday Soc 33:1062–1068

    CAS  Google Scholar 

  • Mihic SJ, Harris RA (1996) Inhibition of ρ1 receptor GABAergic currents by alcohols and volatile anesthetics. J Pharmacol Exp Ther 277:411–416

    PubMed  CAS  Google Scholar 

  • Mihic SJ, McQuilkin SJ, Eger EI, Ionescu P, Harris RA (1994) Potentiation of γ-aminobutyric acid type A receptor-mediated chloride currents by novel halogenated compounds correlates with their abilities to induce general anesthesia. Mol Pharmacol 46:851–857

    PubMed  CAS  Google Scholar 

  • Mihic SJ, Sanna E, Whiting PJ, Harris RA (1995) Pharmacology of recombinant GABAA receptors. Adv Biochem Psychopharmacol, 48:17–40

    PubMed  CAS  Google Scholar 

  • Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, Harris RA, Harrison NL (1997) Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature 389:385–389

    PubMed  CAS  Google Scholar 

  • Mihic SJ, Harris RA (1995) Alcohol actions at the GABA-A receptor/chloride channel complex In: Deitrich RA, Erwin VG (eds) Pharmacological effects of ethanol on the nervous system. CRC Press, Boca Raton, FL, pp 51–72

    Google Scholar 

  • Moody EJ, Harris BD, Skolnick P (1994) The potential for safer anaesthesia using stereoselective anaesthetics. Trends Pharmacol Sci 15:387–391

    PubMed  CAS  Google Scholar 

  • Moody EJ, Knauer C, Granja R, Strakhova M, Skolnick P (1997) Distinct loci mediate the direct and indirect actions of the anesthetic etomidate at GABAA receptors. J Neurochem 69:1310–1313

    PubMed  CAS  Google Scholar 

  • Mullins LJ (1954) Some physical mechanisms in narcosis. Chem Rev 54:289–322

    CAS  Google Scholar 

  • Nicoll RA, Eccles JC, Oshima T, Rubia F (1975) Prolongation of hippocampal inhibitory postsynaptic potentials by barbiturates. Nature 258:625–627

    PubMed  CAS  Google Scholar 

  • Nusser Z, Sieghart W, Benke D, Fritschy JM, Somogyi P (1996) Differential synaptic localization of two major γ-aminobutyric acid type A receptor α subunits on hippocampal pyramidal cells. Proc Natl Acad Sci USA 93:11939–11944

    PubMed  CAS  Google Scholar 

  • Olsen RW, Snowman AM (1982) Chloride-dependent enhancement by barbiturates of γ-aminobutyric acid receptor binding. J Neurosci 2:1812–1823

    PubMed  CAS  Google Scholar 

  • Orser BA, Pennefather PS, MacDonald JF (1997) Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors. Anesthesiol 86:903–917

    CAS  Google Scholar 

  • Ortells MO, Lunt GG (1995) Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci 18:121–127

    PubMed  CAS  Google Scholar 

  • Overton E (1901) Studien über die Narkose, zugleich ein Beitrag zur allgemeiner Pharmakologie. Gustav Fischer, Jena, Switzerland

    Google Scholar 

  • Pearce RA (1999) Effects of volatile anesthetics on GABAA receptors: electrophysiological studies In: Moody EJ, Skolnick P (eds) Molecular bases of anesthesia. CRC Press, Boca Raton, FL (in press)

    Google Scholar 

  • Pistis M, Belelli D, Peters JA, Lambert JJ (1997) The interaction of general anaesthetics with recombinant GABAA and glycine receptors expressed in Xenopus laevis oocytes: a comparative study. Br J Pharmacol 122:1707–1719

    PubMed  CAS  Google Scholar 

  • Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–585

    PubMed  CAS  Google Scholar 

  • Quasha AL, Eger EI, Tinker JH (1980) Determination and applications of MAC. Anesthesiol 53:315–334

    CAS  Google Scholar 

  • Quinlan JJ, Homanics GE, Firestone LL (1998) Anesthesia sensitivity in mice that lack the ß3 subunit of the γ-aminobutyric acid type A receptors. Anesthesiol 88:775–780

    CAS  Google Scholar 

  • Rabow LE, Russek SJ, Farb DH (1995) From ion currents to genomic analysis: recent advances in GABAA receptor research. Synapse 21:189–274

    PubMed  CAS  Google Scholar 

  • Rampil IJ, Mason P, Singh H (1993) Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiol 78:707–712

    CAS  Google Scholar 

  • Rho JM, Donevan SD, Rogawski MA (1996) Direct activation of GABAA receptors by barbiturates in cultured rat hippocampal neurons. J Physiol 497:509–522

    PubMed  CAS  Google Scholar 

  • Rick CE, Ye Q, Finn SE, Harrison NL (1998) Neurosteroids act on the GABAA receptor at sites on the N-terminal side of the middle of TM2. Neuroreport 9:379–383

    PubMed  CAS  Google Scholar 

  • Robertson B (1989) Actions of anaesthetics and avermectin on GABAA chloride channels in mammalian dorsal root ganglion neurones. Br J Pharmacol 98:167–176

    PubMed  CAS  Google Scholar 

  • Rudolph H et al. (1999) Benzodiazepine actions mediated by specific gammaaminobutyric acid-A receptor subtypes. Nature 401:796–800

    PubMed  CAS  Google Scholar 

  • Rupprecht R, Berning B, Hauser CA, Holsboer F, Reul JM (1996) Steroid receptormediated effects of neuroactive steroids: characterization of structure-activity relationship. Eur J Pharmacol 303:227–234

    PubMed  CAS  Google Scholar 

  • Ryder S, Way WL, Trevor AJ (1978) Comparative pharmacology of the optical isomers of ketamine in mice. Eur J Pharmacol 49:15–23

    PubMed  CAS  Google Scholar 

  • Sanna E, Garau F, Harris RA (1995a) Novel properties of homomeric ß1 γ-aminobutyric acid type A receptors: actions of the anesthetics propofol and pentobarbital. Mol Pharmacol 47:213–217

    PubMed  CAS  Google Scholar 

  • Sanna E, Mascia MP, Klein RL, Whiting PJ, Biggio G, Harris RA (1995b) Actions of the general anesthetic propofol on recombinant human GABAA receptors: influence of receptor subunits. J Pharmacol Exp Ther 274:353–360

    PubMed  CAS  Google Scholar 

  • Sanna E, Murgia A, Casula A, Biggio G (1997) Differential subunit dependence of the actions of the general anesthetics alphaxalone and etomidate at γ-aminobutyric acid type A receptors expressed in Xenopus laevis oocytes. Mol Pharmacol 51:484–490

    PubMed  CAS  Google Scholar 

  • Scholfield CN (1980) Potentiation of inhibition by general anaesthetics in neurones of the olfactory cortex in vitro. Pfliigers Archiv - Eur J Physiol 383:249–55

    CAS  Google Scholar 

  • Schuckit MA (1994) Low level of response to alcohol as a predictor of future alcoholism. Am J Psychiatry 151:184–189

    PubMed  CAS  Google Scholar 

  • Schuckit, MA (1992) Reaction to alcohol as a predictor of alcoholism. Alcohol Clin Exp Res 16:656

    Google Scholar 

  • Schuckit MA, Smith TL (1996) An 8-year follow-up of 450 sons of alcoholic and control subjects. Arch Gen Psych 53:202–210

    CAS  Google Scholar 

  • Sear JW, Prys-Roberts C (1979) Plasma concentrations of alphaxalone during continuous infusion of Althesin. Br J Anaesth 51:861–865

    PubMed  CAS  Google Scholar 

  • Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:583–655

    PubMed  CAS  Google Scholar 

  • Sieghart W (1995) Structure and pharmacology of γ-aminobutyric acidA receptor subtypes. Pharmacol Rev 47:181–234

    PubMed  CAS  Google Scholar 

  • Sigel E, Baur R, Trube G, Mohler H, Malherbe P (1990) The effect of subunit composition of rat brain GABAA receptors on channel function. Neuron 5:703–711

    PubMed  CAS  Google Scholar 

  • Sigel E, Buhr A (1997) The benzodiazepine binding site of the GABAA receptor. Trends Pharmacol Sci 18:425–429

    PubMed  CAS  Google Scholar 

  • Simmonds MA, Turner JP (1987) Potentiators of responses to activation of γ-aminobutyric acid (GABAA) receptors. Neuropharmacol 26:923–930

    CAS  Google Scholar 

  • Smith GB, Olsen RW (1995) Functional domains of GABAA receptors. Trends Pharmacol Sci 16:162–168

    PubMed  CAS  Google Scholar 

  • Sonner J, Li J, Eger EI (1998) Desflurane and nitrous oxide but not non-immobilizers, affect nociceptive responses. Anesth Analg 86:629–634

    PubMed  CAS  Google Scholar 

  • Suzdak PD, Schwartz RD, Skolnick P, Paul SM (1986) Ethanol stimulates γ-aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc Natl Acad Sci 83:4071–4075

    PubMed  CAS  Google Scholar 

  • Tanelian DL, Kosek P, Mody I, Maclver MB (1993) The role of the GABAA recep- tor/chloride channel complex in anesthesia. Anesthesiol 78:757–776

    CAS  Google Scholar 

  • Tia S, Wang JF, Kotchabhakdi N, Vicini S (1996) Developmental changes of inhibitory synaptic currents in cerebellar granule neurons: role of GABAA receptor α6 subunit. J Neurosci 16:3630–3640

    PubMed  CAS  Google Scholar 

  • Tickue MK, Lowrimore P, LeHoullier P (1986) Ethanol enhances GABA-induced 36C1 influx in primary spinal cord cultured neurons. Brain Res Bull 17:128– 126

    Google Scholar 

  • Tomlin SL, Jenkins A, Lieb WR, Franks NP (1998) Stereoselective effects of etomidate optical isomers on gamma-aminobutyric acid type A receptors and animals. Anesthesiol 88:708–717

    CAS  Google Scholar 

  • Tretter V, Ehya N, Fuchs K, Sieghart W (1997) Stoichiometry and assembly of a recom- binant GABAA receptor subtype. J Neurosci 17:2728–2737

    PubMed  CAS  Google Scholar 

  • Wafford KA, Burnett DM, Leidenheimer NJ, Burt DR, Wang JB, Kofuji P, Dunwiddie TV, Harris RA, Sikela JM (1991) Ethanol sensitivity of the GABAA receptor expressed in Xenopus oocytes requires 8 amino acids contained in the γ2L subunit. Neuron 7:27–33

    PubMed  CAS  Google Scholar 

  • Wan FJ, Berton F, Madamba SG, Francesconi W, Siggins GR (1996) Low ethanol con- centrations enhance GABAergic inhibitory postsynaptic potentials in hippocampal pyramidal neurons only after block of GABA-B receptors. Proc Natl Acad Sci USA 93:5049–5054

    PubMed  CAS  Google Scholar 

  • Wegelius K, Pasternack M, Hitunen JO, Rivera C, Kaila K, Saarma M, Reeben M (1998) Distribution of GABA receptor ρ subunit transcripts in the rat brain. Eur J Neurosci 10:350–357

    PubMed  CAS  Google Scholar 

  • Weight FF, Aguayo LG, White G, Lovinger DM, Peoples RW (1992) GABA- and glutamate-gated ion channels as molecular sites of alcohol and anesthetic action. Adv Biochem Psychopharmacol 47:335–347

    PubMed  CAS  Google Scholar 

  • Weiner JL, Gu C, Dunwiddie TV (1997a) Differential ethanol sensitivity of subpopulations of GABA-A synapses onto rat hippocampal CA1 pyramidal neurons. J Neurophys 77:1306–1312

    CAS  Google Scholar 

  • Weiner JL, Valenzuela CF, Watson PL, Frazier CJ, Dunwiddie TV (1997b) Elevation of basal protein kinase C activity increases ethanol sensitivity of GABAA receptors in rat hippocampal CA1 pyramidal neurons. J Neurochem 68:1949–1959

    PubMed  CAS  Google Scholar 

  • Weiner JL, Zhang L, Carlen PL (1994) Potentiation of GABAA-mediated synaptic current by ethanol in hippocampal CA1 neurons: Possible role of protein kinase C. J Pharm Exp Ther 268:1388–1395

    CAS  Google Scholar 

  • White PF, Schuttler J, Shafer A, Stanski DR, Horai Y, Trevor AJ (1985) Comparative pharmacology of the ketamine isomers Studies in volunteers. Br J Anaesth 57:197–203

    PubMed  CAS  Google Scholar 

  • Whiting PJ, McAllister G, Vasilatis D, Bonnert TP, Heavens RP, Smith DW, Hewson L O’Donnell R, Rigby MR, Sirinathsinghji DJS, Marshall G, Thompson SA, Wafford KA (1997) Neuronally restricted RNA splicing regulates the expression of a novel GABAA receptor subunit conferring atypical functional properties. J Neurosci 17:5027–5037

    PubMed  CAS  Google Scholar 

  • Whiting PJ, McKernan RM, Wafford KA (1995) Structure and pharmacology of vertebrate GABAA receptor subtypes. Intl Rev Neurobio 38:95–138

    CAS  Google Scholar 

  • Wick MJ, Mihic SJ, Ueno S, Mascia MP, Trudell JR, Brozowski SJ, Ye Q, Harrison NL, Harris RA (1998) Mutations of γ-aminobutyric acid and glycine receptors change alcohol cutoff: evidence for an alcohol receptor? Proc Natl Acad Sci USA 95:6504–6509

    PubMed  CAS  Google Scholar 

  • Williams KL, Ferko AP, Barbieri EJ, Digregoria GJ (1995) Glycine enhances the central depressant properties of ethanol in mice. Pharmacol Biochem Behav 50:199–205

    PubMed  CAS  Google Scholar 

  • Wingrove PB, Wafford KA, Bain C, Whiting PJ (1994) The modulatory action of loreclezole at the γ-aminobutyric acid type A receptor is determined by a single amino acid in the ß2 and ß3 subunit. Proc Natl Acad Sci USA 91:4569–4573

    PubMed  CAS  Google Scholar 

  • Winters WD, Ferrar-Allado T, Guzman-Flores C, Alcaraz M (1972) The cataleptic state induced by ketamine: a review of the neuropharmacology of anesthesia. Neuropharmacol 11:303–315

    CAS  Google Scholar 

  • Wittmer LL, Hu Y, Kalkbrenner M, Evers AS, Zorumski CF, Covey DF (1996) Enantioselectivity of steroid-induced γ-aminobutyric acidA receptor modulation and anesthesia. Mol Pharmacol 50:1581–1586

    PubMed  CAS  Google Scholar 

  • Xu M, Akabas MH (1993) Amino acids lining the channel of the γ-aminobutyric acid type A receptor identified by cysteine substitution. J Biol Chem 268:21505–21508

    PubMed  CAS  Google Scholar 

  • Xu M, Akabas MH (1996) Identification of channel-lining residues in the M2 membrane-spanning segment of the GABAA receptor α1 subunit. J Gen Physiol 107:195–205

    PubMed  CAS  Google Scholar 

  • Yang J, Isenberg KE, Zorumski CF (1992) Volatile anesthetics gate a chloride current in postnatal rat hippocampal neurons. FASEB J 6:914–918

    PubMed  CAS  Google Scholar 

  • Ye Q, Koltchine VV, Mihic SJ, Mascia MP, Wick M, Finn SE, Harrison NL, Harris RA (1998) Enhancement of glycine receptor function by ethanol is inversely correlated with molecular volume at position α267. J Biol Chem 273:3314–3319

    PubMed  CAS  Google Scholar 

  • Zafra F, Aragon C, Gimenez C (1997) Molecular biology of glycinergic neurotransmission. Mol Neurobiol 14:117–142

    PubMed  CAS  Google Scholar 

  • Zeilhofer HU, Swandulla D, Geisslinger G, Brune K (1992) Differential effects of ketamine enantiomers on NMDA receptor currents in cultured neurons. Eur J Pharmacol 213:155–158

    PubMed  CAS  Google Scholar 

  • Zimmerman SA, Jones MV, Harrison NL (1994) Potentiation of γ-aminobutyric acidA receptor CI- current correlates with in vivo anesthetic potency. J Pharmacol Exp Ther 270: 987–991

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krasowski, M.D., Harris, R.A., Harrison, N.L. (2001). Allosteric Modulation of GABAA Receptor Function by General Anesthetics and Alcohols. In: Möhler, H. (eds) Pharmacology of GABA and Glycine Neurotransmission. Handbook of Experimental Pharmacology, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56833-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56833-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63191-7

  • Online ISBN: 978-3-642-56833-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics