Charge Exchange in Atom-Cluster Collisions

  • C. Bréchignac
  • Ph. Cahuzac
  • B. Concina
  • J. Leygnier
  • I. Tignères
Chapter

Abstract

Charge exchange processes which occur in collisions either between atoms and a surface or between atoms and molecular ions have been extensively studied since they act as precursors of any chemical reactions. The first studies in the field of atom-surface interaction were initiated by Taylor and Langmuir in 1933 for cesium adsorption on tungsten. As the ionization potential of cesium is less than the work function of tungsten, cesium atom transfers its electron to tungsten leading to positive ion which interacts with the metal through image potential [1]. More recently charge transfer in scattering atoms, molecules or ions from surface have been the subject of numerous theoretical and experimental studies for surface analysis and for local probe. The general approach in describing charge transfer in scattering atoms from a metal surface assumes that the metal electrons are free electrons in a potential box and that the atom is a one-electron hydrogen like atom. When the atom is brought close to the metal surface the originally sharp valence level shifts and broadens into a band of finite width making resonant electron tunneling through the potential barrier between the atom and the metal possible [2,3]. However if the atomic level still stay off resonance from the fermi level of the metal surface, an increase of incident velocity parallel to the surface can shift the fermi sphere into resonance with the atomic state as clearly illustrated in [4]. The influence of the velocity component of the colliding particle parallel to the surface is already known for a long time in atomic collisions, where one studies electron transfer during the collision as a function of relative velocity between the two particles.

Keywords

Lithium Hydroxide Catalysis Propen Tungsten 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.B. Taylor and I. Langmuir, Phys. Rev.44, 423 (1933)ADSCrossRefGoogle Scholar
  2. 2.
    J.W. Gadzuk, Surf. Science6, 133 (1967); 6, 159 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    J. Los and J.J.C. Geerlings, Physics Reports,190, 133 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    H. Winter and R. Zimny in: Coherence in atomic collision physics, eds. H.J. Beyer, K. Blum and R. Hippler (Plenum, New York 1988) p. 283Google Scholar
  5. 5.
    J. Perel, R.H. Vermon, H.L. Daley, Phys. Rev.138, A937 (1965)ADSCrossRefGoogle Scholar
  6. 6.
    M. Brack, Rev. Mod. Physics65, 677 (1993) and references thereinADSCrossRefGoogle Scholar
  7. 7.
    J. Arnold, J. Kowalski, G. zu Putlitz, T. Stehlin, F. Träger, Z. Phys. A322, 179 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    M. Abshagen, J. Kowalski, M. Meyberg, G. zu Putlitz, J. Slaby, F. Träger, Chem. Phys. Lett.174, 455 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    C. Bréchignac, Ph. Cahuzac,J. Leygnier, R. Pflaum, J. Weiner, Phys. Rev. Lett.61, 175 (1988)CrossRefGoogle Scholar
  10. 10.
    C. Bréchignac, Ph. Cahuzac, F. Carlier, J. Leygnier, I. Hertel, Z. Phys. D17, 61 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    N.D. Bhaskar, R.P. Frueholz, CM. Climcak, R.A. Cook, Chem. Phys. Lett.154, 175 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    S. Pollack, D. Cameron,M. Rokni, W. Hill, J.H. Parks, Chem. Phys. Lett.256, 473 (1993Google Scholar
  13. 13.
    O. Knospe, J. Jellinek, V. Saalmann, R. Schmidt, Eur. Phys. Lett. D5, 1 (1999)ADSGoogle Scholar
  14. 14.
    M. Guissani, V. Sidis, Z. Phys. D40, 221 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    C. Klots, J. Chem. Phys.83, 5854 (1985)ADSCrossRefGoogle Scholar
  16. C. Klots,Z. Phys. D5, 83 (1987)ADSCrossRefGoogle Scholar
  17. 16.
    M. Bacal, W. Reichelt, Rev. Sci. Instrum.45, 769 (1974)ADSCrossRefGoogle Scholar
  18. 17.
    C. Bréchignac, H. Busch, Ph. Cahuzac, J. Leygnier, J. Chem. Phys.101, 6992 (1994)ADSCrossRefGoogle Scholar
  19. 18.
    M.L. Homer, J.L. Persson, E.C. Honea, R.L. Whetten, Z. Phys. D22, 441 (1991)ADSCrossRefGoogle Scholar
  20. 19.
    E. Benichou, A.R. Allouche, M. Aubert-Frécon, R. Antoine, M. Broyer, Ph. Dugourd, D. Rayane, Chem. Phys. Lett.290, 171 (1998)ADSCrossRefGoogle Scholar
  21. 20.
    J. Perel, H.L. Daley, Electronic and Atomic Collisions, ICPEAC VIII proceedings, B.C. Bobic,M.V. Kurepa Editors, Beograd, Vol II (1973)Google Scholar
  22. 21.
    R.E. Olson, Phys. Rev. A6, 1822 (1972)ADSCrossRefGoogle Scholar
  23. 22.
    R.J. Fortner, B.P. Carry, R.C. Der, T.M. Kavanagh, J.M. Khan, Phys. Rev.185, 164 (1969)ADSCrossRefGoogle Scholar
  24. 23.
    D. Rapp, W.E. Francis, J. Chem. Phys.37, 2631 (1962)ADSCrossRefGoogle Scholar
  25. 24.
    H.S.W. Massey, Rep. Progr. Phys.12, 248 (1949)ADSCrossRefGoogle Scholar
  26. 25.
    J. Perel, H.L. Daley, Phys. Rev. A4, 162 (1971)ADSCrossRefGoogle Scholar
  27. 26.
    W. Knight, K. Clemenger, W.A. de Heer, W.A. Saunders, Phys. Rev. B31, 2539 (1985)ADSCrossRefGoogle Scholar
  28. 27.
    E. Bénichou, R. Antoine, D. Rayane, B. Vezin, F.W. Dalby, Ph. Dugourd, M. Broyer, C. Ristori, F. Chandezon, B.A. Huber, J.C. Rocco, S.A. Blundell, C. Guet, Phys. Rev A59, 1 (1999 )ADSCrossRefGoogle Scholar
  29. 28.
    H.G. Limberger, T.P. Martin, J. Chem. Phys.90, 2979 (1989)ADSCrossRefGoogle Scholar
  30. 29.
    C. Bréchignac, Ph. Cahuzac, M. de Frutos, P. Gamier, Z. Phys. D42, 303 (1997)ADSCrossRefGoogle Scholar
  31. 30.
    F. Finocchi, C. Noguera, Phys. Rev. B57, 14464 (1998)CrossRefGoogle Scholar
  32. 31.
    P. Lievens, P. Thoen, S. Bouchaert, W. Bouwen, E. Van der Meert, F. vanhoutte, H. Weidele, R.E. Silverans, Z. Phys. D42, 231 (1997)ADSCrossRefGoogle Scholar
  33. 32.
    F. Finocchi, C. Noguera, EPJ. D9, 327 (1999)ADSCrossRefGoogle Scholar
  34. 33.
    P. Poncharal, J.M. L’Hermite, P. Labastie, Chem. Phys. Lett.253, 463 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • C. Bréchignac
    • 1
  • Ph. Cahuzac
    • 1
  • B. Concina
    • 1
  • J. Leygnier
    • 1
  • I. Tignères
    • 1
  1. 1.Laboratoire Aimé Cotton CNRS IICampus d’OrsayOrsay CedexFrance

Personalised recommendations