Electronic Spectroscopy and Excited State Dynamics of Aluminium Atom-Molecule Complexes

  • Paul J. Dagdigian
  • Xin Yang
  • Irina Gerasimov
  • Jie Lei


There has been considerable interest in the interaction of metal atoms, in both their ground and electronically excited states, with small molecules. In part, this interest stems from a desire to relate properties, such as the electronic absorption spectra, of cryogenic molecular matrices doped with these atoms [1] to the individual 2-body atom-molecule interactions. In our laboratory, we have employed laser fluorescence excitation spectroscopy of weakly bound binary complexes to probe these interactions, as has been done in extensive studies of metal atom-rare gas complexes [2].


Dissociation Energy Vibrational Level Nonradiative Decay Radiative Decay Rate Supersonic Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. E. Fajardo, S. Tarn, T. L. Thompson, and M. W. Cordonnier, Chem. Phys. 189, 351 (1994), and references therein.CrossRefGoogle Scholar
  2. 2.
    For a comprehensive review, see W. H. Breckenridge, C. Jouvet, and B. Soep, in Advances in Metal and Semiconductor Clusters, edited by M. A. Duncan (JAI Press, Greenwich, 1995), Vol. 3, p. 1.Google Scholar
  3. 3.
    P. J. Dagdigian, X. Yang, and E. Hwang, in Highly Excited States: Relaxation, Reactions, and Structure, ACS Symp. Ser. edited by A. S. Mullin and G. C. Schatz (American Chemical Society, Washington, 1997), p. 122.Google Scholar
  4. 4.
    X. Yang, E. Hwang, M. H. Alexander, and P. J. Dagdigian, J. Chem. Phys. 103, 7966 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    X. Yang and P. J. Dagdigian, J. Chem. Phys. 109, 8920 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    X. Yang, E. Hwang, P. J. Dagdigian, M. Yang, and M. H. Alexander, J. Chem. Phys. 103, 2779 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    X. Yang, E. Hwang, and P. J. Dagdigian, J. Chem. Phys. 104, 8165 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    X. Yang, P. J. Dagdigian, and M. H. Alexander, J. Chem. Phys. 108, 3522 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    P. J. Dagdigian and X. Yang, Faraday Discuss. 108, 287 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    H. Partridge, C. W. Bauschlicher Jr. and L. Visscher, Chem. Phys. Lett. 246, 33 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    G. Chaban and M. S. Gordon, J. Phys. Chem. 100, 95 (1996).CrossRefGoogle Scholar
  12. 12.
    M. H. Alexander and J. Williams, J. Chem. Phys. (submitted).Google Scholar
  13. 13.
    G. Chaban, M. S. Gordon, and D. R. Yarkony, J. Phys. Chem. A 101, 7953 (1997).CrossRefGoogle Scholar
  14. 14.
    D. M. Lubman, C. T. Rettner, and R. N. Zare, J. Phys. Chem. 86, 1129 (1982).CrossRefGoogle Scholar
  15. 15.
    M. H. Alexander and M. Yang, J. Chem. Phys. 103, 7956 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    X. Yang, I. Gerasimov, and P. J. Dagdigian, Chem. Phys. 239, 207 (1998).CrossRefGoogle Scholar
  17. 17.
    L. R. Brock and M. A. Duncan, J. Phys. Chem. 99, 16571 (1995).CrossRefGoogle Scholar
  18. 18.
    G. Chaban and M. S. Gordon, J. Chem. Phys. 107, 2160 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids. Vol. 1: Fundamentals (Clarendon Press, Oxford, 1984).Google Scholar
  20. 20.
    I. Gerasimov, J. Lei, and P. J. Dagdigian, J. Phys. Chem. A 103, 5910 (1999).CrossRefGoogle Scholar
  21. 21.
    S. A. Heidecke, Z. Fu, J. R. Colt, and M. D. Morse, J. Chem. Phys. 97, 1692 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Paul J. Dagdigian
    • 1
  • Xin Yang
    • 1
  • Irina Gerasimov
    • 1
  • Jie Lei
    • 1
  1. 1.Department of ChemistryThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations