Skip to main content

The Physics of Plasma Expansion

  • Chapter
Book cover Atomic and Molecular Beams

Abstract

Plasma expansion from a hot and dense source, where electric or electromagnetic energy is dissipated, to a low pressure environment, is a very general physical phenomenon which concerns a large variety of objects and covers a broad range of dimensions. The physical issues addressed are relevant to many subjects in science ranging from astrophysical objects [1,2], like supernovae and solar flares, to small laser spots [3-7] and cathode spots [8] (as in vacuum arc). On intermediate scale, it also includes expansion from thermal plasma sources (DC, RF, microwave torches) for plasma chemistry [9-11], as well as divertor region of Tokamak plasmas [12]. Applications of high density plasmas are laser plasma cutting, welding, heating, and annealing [9], and the generation of VUV and X-ray radiation [13]. For the latter two applications, a high temperature, multiple ionization, and high (laser) power densities are required. Laser produced plasmas are also projected to create modulated plasmas for plasma based free electron lasers. Finally in (vacuum) arc switching, the conductive properties of high density plasmas are used

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beams and Jets in Astrophysics, edited by P.A. Hugues (Cambridge University, Cambridge, England, 1991).

    Google Scholar 

  2. J.M. Shull and C.F. McKee, Ap. J. 227, 131 (1979).

    Article  ADS  Google Scholar 

  3. J.C.Miller, R.F.Haglund, Laser ablation and desorption, Experimental Methods in Physical Sciences (Academic Press, San Diego, 1998), vol. 30.

    Google Scholar 

  4. Yu. P. Raizer and D.C. Smith, J. Opt. Soc. Am. 70, 258 (1980).

    Google Scholar 

  5. Yu. P. Raizer, Sov. Phys. Usp. 23, 789 (1980).

    Article  ADS  Google Scholar 

  6. A. Lebéhot and R. Campargue, Phys. Plasmas 3, 2502 (1996).

    Article  ADS  Google Scholar 

  7. J.M. Girard, A. Lebéhot, and R. Campargue, J. Phys. D 26, 1382 (1993).

    Article  ADS  Google Scholar 

  8. E. Hantzsche, Contr. Plasma Phys. 30, 575 (1990).

    Article  ADS  Google Scholar 

  9. M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas, Fundamental and Applications (Plenum Press, 1994), Vol. 1-2.

    Google Scholar 

  10. S.M.Aithal, V.V.Subramaniam, and V.Babu, Plasma Chem. Plasma Proc. 19, 487 (1999).

    Google Scholar 

  11. M.C.M. van de Sanden, J.M. de Regt, and D.C. Schram, Plasma Sources Sci. Technol. 3, 501 (1994).

    Google Scholar 

  12. J. Wesson, Tokamaks (Clarendon Press, Oxford, 1997).

    Google Scholar 

  13. A. McPherson, B.D. Thompson, A.B. Borisov, K. Boyer, and C.K. Rhodes, Nature 370, 631 (1994).

    Article  ADS  Google Scholar 

  14. H. Askenas and F.S. Sherman, in Rarefied Gas Dynamics, edited by J.H. Leeuw (Academic Press, New York, 1966), vol. 2, p. 84.

    Google Scholar 

  15. Atomic and Molecular Beam Methods, edited by G. Scoles (Oxford University Press, New York, Oxford, 1988, 1992).

    Google Scholar 

  16. B.B. Hamel and D.R. Willis, Phys. Fluids 9, 829 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  17. E.P. Muntz, B.B. Hamel, and B.L. Maguire, AIAA J. 8, 1651 (1970).

    ADS  Google Scholar 

  18. H.C.W. Beijerinck, R.J.F avn Gerwen, E.R.T. Kerstel, J.F.M. Martens, E.J.W. van Vliembergen, M.R.Th. Smits, and G.H. Kaashoek, Chem. Phys. 96, 153 (1985).

    Article  Google Scholar 

  19. R. Campargue, J. Phys. Chem. 88, 4466 (1984).

    Article  Google Scholar 

  20. J.M. Girard, Etude d’un jet supersonique de plasma entretenu par laser, Ph.D. Thesis, in french, (University of Paris-sud, Orsay, 1994).

    Google Scholar 

  21. S.C. Snyder, A.B. Murphy, D.L. Hofeldt, and L.D. Reynolds, Phys. Rev. E 52, 2999 (1995).

    Article  ADS  Google Scholar 

  22. A.B. Murphy, J. Phys. D: Appl. Phys. 27, 1492 (1994).

    Article  ADS  Google Scholar 

  23. R.B. Fraser, F. Robben, and L. Talbot, Phys. Fluids 14, 2317 (1971).

    Article  ADS  Google Scholar 

  24. M.C.M. van de Sanden, R. van den Bercken, and D.C. Schram, Plasma Sources Sci. Technol. 3, 511 (1994).

    Google Scholar 

  25. H.J.G. Gielen, On the electric and magnetic field generation in expanding plasmas, Ph.D. Thesis (Eindhoven University of Technology, Eindhoven, 1989).

    Google Scholar 

  26. C.T. Rettner and D.J. Auerbach, J. Chem. Phys. 104, 2732 (1996).

    Article  ADS  Google Scholar 

  27. S. Mazouffre, M.G.H. Boogaarts, J.A.M. van der Mullen, and D.C. Schram, Phys. Rev. Lett. 84, 2622 (2000).

    Article  ADS  Google Scholar 

  28. D.C.Schram, I.J.M.M. Raaijmakers, B. van der Sijde, H.J.W. Schenke-laars, P.W.J.M. Boumans, Spectrochimica Acta 38B, 3369 (1992).

    Google Scholar 

  29. M.C.M. van de Sanden, R.J. Severens, W.M.M. Kessels, R.F.G. Meulenbroeks , D.C. Schram, J. Appl. Phys. 84, 2426 (1998).

    Article  ADS  Google Scholar 

  30. J.A.M. van der Mullen, Physics Reports 191, 109 (1990).

    Article  ADS  Google Scholar 

  31. G. Dinescu, O. Maris, G. Musa, Contrib. Plasma Phys. 31, 49 (1991).

    Article  ADS  Google Scholar 

  32. L. Landau and E. Liftshitz, Fluid Mechanics (Pergamon Press, London, 1989).

    Google Scholar 

  33. K.T.A.L. Burm, W.J. Goedheer, D.C. Schram, Phys. Plasmas 6, 2622 (1999).

    Article  ADS  Google Scholar 

  34. S.C. Snyder and R.E. Bentley, J. Phys. D: Appl. Phys. 29, 3045 (1996).

    Article  ADS  Google Scholar 

  35. M.C.M. van de Sanden, J.M. de Regt, and D.C. Schram, Phys. Rev. E 47, 2792 (1993).

    Article  ADS  Google Scholar 

  36. H.M. Mott-Smith, Phys. Rev. 82, 885 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. S.C. Snyder, L.D. Reynolds, G.D. Lassahn, J.R. Fincke, C.B. Shaw Jr., and R.J. Kearney, Phys. Rev. E 47, 1996 (1993).

    Article  ADS  Google Scholar 

  38. J. Panda and R.G. Seasholtz, Phys. Fluids 11, 3761 (1999).

    Article  ADS  MATH  Google Scholar 

  39. L.M. Cohen and R.K. Hanson, J. Phys. D: Appl. Phys. 25, 339 (1992).

    Article  ADS  Google Scholar 

  40. Z. Szymansky, Z. Peradzynski, J. Kurzyna, J. Hoffman, M. Dudeck, M. de Graaf, and V. Lago, J. Phys. D: Appl. Phys. 30, 998 (1997).

    Article  ADS  Google Scholar 

  41. J.R. Fincke, W.D. Swank, S.C. Snyder, and D.C. Haggard, Rev. Sci. Instrum. 64, 3585 (1993).

    Article  ADS  Google Scholar 

  42. M. Rahmane, G. Soucy, and M.I. Boulos, Rev. Sci. Instrum. 66, 3424 (1995).

    Article  ADS  Google Scholar 

  43. O. Chazot, J. Gomes, and M. Carbonaro, AIAA TP 98, 2478 (1998).

    Google Scholar 

  44. B. Porterie, M. Larini, and J.C. Loraud, J. Therm. Heat. Transfer 8, 385 (1994).

    Article  Google Scholar 

  45. R.F.G. Meulenbroeks, A.J. van Beek, A.J.G. van Helvoort, M.C.M. van de Sanden, and D.C. Schram, Phys. Rev. E 49, 4397 (1994).

    Article  ADS  Google Scholar 

  46. A.J.M. Buuron, D.K. Otorbaev, M.C.M. van de Sanden, and D.C. Schram, Phys. Rev. E 50, 1383 (1994).

    Article  ADS  Google Scholar 

  47. R.F.G Meulenbroeks; R.A.H. Engeln, C. Box, I. de Bari, M.C.M. van de Sanden, J.A.M van der Mullen, and D.C. Schram, Phys. Plasmas 2, 1002 (1995).

    Article  ADS  Google Scholar 

  48. M.J. de Graaf, R. Severens, R.P. Dahiya, M.C.M. van de Sanden, and D.C. Schram, Phys. Rev. E 48, 2098 (1993).

    Article  ADS  Google Scholar 

  49. R.F.G. Meulenbroeks, R.A.H. Engeln, and D.C. Schram, Phys. Rev. E 53, 5207 (1996).

    Article  ADS  Google Scholar 

  50. R.F.G. Meulenbroeks, D.C. Schram, M.C.M. van de Sanden, and J.A.M. van der Mullen, Phys. Rev. Lett. 76, 1840 (1996).

    Article  ADS  Google Scholar 

  51. A. Lebéhot, J. Kurzyna, V. Lago, M. Dudeck, and M. Nishida, Phys. Plasmas 6, 4750 (1999).

    Article  ADS  Google Scholar 

  52. B. Gordiets, CM. Ferreira, J. Nahorny, D. Pagnon, M. Touzeau, and M Vialle, J. Phys. D: Appl. Phys. 29, 1021 (1996).

    Article  ADS  Google Scholar 

  53. R.W. Bickes Jr., H.R. Newton, J.M. Herrmann, and R.B. Bernstein, J. Chem. Phys. 64, 3648 (1976).

    Article  ADS  Google Scholar 

  54. L. Robin, P. Vervish, and B.G. Cheron, Phys. Plasmas 1, 444 (1994).

    Article  ADS  Google Scholar 

  55. M. Rutigliano, G.D. Billing, and M. Cacciatore, in Rarefied Gas Dynamics, edited by R. Brun, R. Campargue, R. Gatignol, J.-C. Leugrand , (Cépadués Edition, Toulouse, 1999), vol. 1, p. 365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schram, D., Mazouffre, S., Engeln, R., van de Sanden, M. (2001). The Physics of Plasma Expansion. In: Campargue, R. (eds) Atomic and Molecular Beams. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56800-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56800-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63150-4

  • Online ISBN: 978-3-642-56800-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics