Advertisement

Microreactors as Tools in Chemical Research

  • Otto Woerz

Abstract

Microreactors enable both temperature and velocity gradients to be minimized. That is why only microreactors allow maximum selectivity to be attained when it comes to fast, complex, exothermic or endothermic reactions—multi-phase ones in particular. Several examples demonstrate this. In many cases only microreactors make it possible to measure the kinetics. Another advantage of microreactors is that only very small quantities of reactants are needed—even in continuous process microreactors. It has to be accepted that the large surface-to-volume ratio may have a “detrimental” effect, but by applying different materials such effects can be deliberately used. Examples are given in which industrial production in conventional reactors is impossible (direct fluorination) or extremely expensive (lowtemperature reactions), but which can be realized in micro- or milli-reactors. However, the greatest practical use of microreactors is the information they provide in helping us to quickly determine the most suitable conventional reactor to employ.

Keywords

Soot Formation Short Residence Time Microsystem Technology Adiabatic Temperature Rise Maximum Selectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ehrfeld, W.; Hessel, V.; Möbius, H.; Richter,Th.; Russow, K.; „Potential and Realization of Microreactors“ in Microsystem Technology for Chemical and Biological Microreactors, DECHEMA Monographs, Vol. 132, VCH Verlagsgesellschaft, Weinheim 1996, pp. 1–28.Google Scholar
  2. [2]
    Hagendorf, U.; Janicke, M.; Schüth, F.; Schubert, K.; Fichtner, M.; „A Pt/Al2O3 coated microstructured reactor/heat-exchanger for the controlled H2 /O2-reaction in the explosion regime“, in Ehrfeld, W.; Rinard, I.H.; Wegeng, R.S.(Eds.) Process Miniaturization: 2nd International Conference on Microreaction Technology;IMRET 2; Topical Conference Preprints, pp. 81–87, AICHE, New Orleans,USA, (1998)Google Scholar
  3. [3]
    Schubert, K.; Bier, W.; Brandner, J.; Fichtner, M.; Franz, C.; Linder, G.; „Realization and Testing of Microstructure Reactors, Micro Heat Exchangers and Micromixers for Industrial Applications in Chemical Engineering“, in Ehrfeld, W.; Rinard,LH.; Wegeng, R.S.; (Eds.) Process Miniaturization: 2nd International Conference on Microreaction Technology, IMRET 2; Topical Conference Preprints, pp. 88–95, AICHE, New Orleans,USA (1998).Google Scholar
  4. [4]
    Schubert, K.; „Entwicklung von Mikrostrukturapparaten für Anwendungen in der chemischen und thermischen Verfahrenstechnik“, KfK Ber.6080, pp. 53–60 (1998).Google Scholar
  5. [5]
    Adams, T.M.; Abdel-Khalik, S.I.; Jeter, S.M.; Qureshi, Z.H.; „An Experimental Investigation on Single Phase Forced Convection in Microchannels“, AICHE Symp.Ser. 314, pp.87–94, (1997).Google Scholar
  6. [6]
    Lerou, J.J.; Harold, M.P.; Ryley, J.; Ashmead, J.; O’Brien, T.C.; Johnson, M.; Perrotto, J.; Blaisdell, C.T.; Rensi, T.A.; Nyquist, J.; „Microfabricated Minichemical Systems: Technical Feasibility“, in Microsystem Technology for Chemical and Biological Microreactors, DECHEMA Monographs, Vol. 132, VCH Verlagsgesellschaft, Weinheim 1996, pp. 51–70.Google Scholar
  7. [7]
    Wießmeier, G.; Schubert, K.; Hönicke, D.; „Monolithic Microreactors Possessing Regular Mesopore Systems for the Successful Performance of Heterogeneously Catalysed Reactions“, in Microreaction Technology,Springer, 1998, pp. 20–26.Google Scholar
  8. [8]
    Wießmeier, G.; Hönicke, D.; „Strategy for the Development of Micro Channel Reactors for Heterogeneously Catalyzed Reactions“, in Ehrfeld, W.; Rinard, I.H.; Wegeng, R.S.; (Eds.) Process Miniaturization: 2nd International Conference on Microreaction Technology; IMRET 2; Topical Conference Preprints, pp.24–32, AICHE, New Orleans, USA, (1998).Google Scholar
  9. [9]
    Wörz, O.; „Microreactors — a New Efficient Tool for Reactor Development“, Chemical Engineering & Technology, 2, Vol.24 (2001), pp. 138–142.CrossRefGoogle Scholar
  10. [10]
    Krummradt, H.; Kopp, U.; Stoldt, J.; „Experiences with the Use of Microreactors in Organic Synthesis“, in Ehrfeld, W.; (Ed.) Microreaction Technology: 3rd International Conference on Microreaction Technology, Proceedings of IMRET 3, pp. 181–186, Springer Verlag, Berlin, (2000).Google Scholar
  11. [11]
    Bayer, T.; Pysall, D.; Wachsen, O.; „Micro Mixing Effects in Continuous Radical Polymerization“, ibid, pp.165–170.Google Scholar
  12. [12]
    Hessel, V.; Ehrfeld, W.; Golbig, K.; Haverkamp, V.; Löwe, H.; Storz, M.; Wille, C.; Guber, A.; Jänisch, K.; Baerns, M.; “Gas/liquid Microreactors for Direct Fluorination of Aromatic Compounds using Elemental Fluorine“, in Ehrfeld, W. (Ed.) Microreaction Technology: 3rd International Conference on Microreaction Technology, Proceedings of IMRET 3, pp. 526–540, Springer-Verlag, Berlin, (2000).Google Scholar
  13. [13]
    Ehrfeld, W.; Hessel, V.; Löwe, H.; „Microreactors“, pp. 277–283, WILEY-VCH Verlag, Weinheim, (2000).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Otto Woerz
    • 1
  1. 1.BASF Aktiengesellschaft, Ludwigshafen, Ammonia LaboratoryGermany

Personalised recommendations