Skip to main content

New process for manufacturing ceramic microfluidic devices for microreactor and bioanalytical applications

  • Conference paper

Abstract

The advances of the past few years in microreactors have demonstrated that microchips have numerous significant advantages with respect to cost, safety, throughput, kinetics and scale-up [1-3]. The whole aspect of heat management, enabling mass and heat transfer to be extremely rapid, leads to a higher level of reaction control and reactant manipulation at any one point within the chip.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Löwe, W. Ehrfeld, “State-of-the-art in microreaction technology: concepts, manufacturing and applications”, Electrochem. Acta 44 (1999), 3679–3689.

    Article  Google Scholar 

  2. S. H. De Witt, “Microreactors for chemical synthesis”, Current Opinion in Chemical Biology 3 (1999), 350–356.

    Article  Google Scholar 

  3. T. McCreedy, “Fabrication techniques and materials commonly used for the production of microreactors and micro total analytical systems”, Trends in analytical chemistry, 19 (2000), 396–401.

    Article  CAS  Google Scholar 

  4. H. Becker, C. Gärtner, “Polymer microfabrication methods for microfluidic analytical applications”, Electrophoresis, 21 (2000), 12–26.

    Article  CAS  Google Scholar 

  5. C. Carroza, N. Croce, B. Magnani, and P. Dario, “A piezoelectric-driven strereolithographyfabricated micropump”, J. Micromech. Microeng., Vol. 5, pp. 175–179, (1995).

    Article  Google Scholar 

  6. T. Nakamoto, K. Yamaguchi, P. Abraha, and K. Mishima, “Manufacturing of three-dimensional micro-parts by UV laser induced polymerization”, J. Micromech. Microeng. Vol. 6, pp. 240–253, (1996).

    Article  CAS  Google Scholar 

  7. X. Zhang, X.N. Jiang, C. Sun, “Microstereolithography of polymeric and ceramic microstructures”, Sensors and Actuators A, Vol. 77, pp. 149–156, (1999).

    Article  Google Scholar 

  8. A. Bertsch, S. Zissi, J.Y. Jézéquel, S. Corbel, and J.C. André, “Microstereolithography using a liquid crystal display as dynamic mask-generator”, Microsyst. Techn. 3, pp. 42–47, (1997).

    Article  Google Scholar 

  9. M. Farsari, F. Claret-Tournier, S. Huang, C.R. Chatwin, D.M. Budgett, P.M. Birch, R.C.D. Young, J.D. Richardson, “A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask”, J. Materials Proc. Technol., 107, 167–172, (2000).

    Article  Google Scholar 

  10. P.F. Jacobs, Rapid Prototyping and Manufacturing: Fondamentals of Stereolithography, The Society of Manufacturing Engineers, Dearborn, MI, 1992.

    Google Scholar 

  11. S. Monneret, V. Loubère, S. Corbel, “Micro-stereolithography using a dynamic mask generator and a non-coherent visible light source”, Proceedings of the SPIE 3680 (1999), 553–561.

    Article  CAS  Google Scholar 

  12. M.L. Griffith, J.W. Halloran, “Freeform fabrication of ceramics via stereolithography”, J. Am. Ceram. Soc., Vol. 79, N°10, pp. 2601–2608 (1996).

    Article  CAS  Google Scholar 

  13. Hinczewski, S. Corbel, T. Chartier, “Stereolithography for the fabrication of ceramic threedimensional parts”, Rapid Prototyping Journal, Vol. 4, N°3, pp. 104–111, (1998).

    Article  Google Scholar 

  14. W. E. Moerner, M. Orrit, Science 283, 1670 (1999)

    Article  CAS  Google Scholar 

  15. S. M. Nie, R. N. Zare, Annu. Rev. Biophys. Biomol. Struct. 26, 567 (1997)

    Article  CAS  Google Scholar 

  16. E. B. Shera, N. K. Seitzinger, L. M. Davis, R A. Keller, S. A. Soper, Chem. Phys. Lett. 174, 553 (1990)

    Article  CAS  Google Scholar 

  17. S. Weiss, Science 283, 1676 (1999)

    Article  CAS  Google Scholar 

  18. W. P. Ambrose, P. M. Goodwin, J. H. Jett, M. E. Johnson, J. C. Martin, B. L. Marrone, J. A. Schecker, C. W. Wilkerson, R. A. Keller, Phys. Chem. 97, 1535 (1993)

    CAS  Google Scholar 

  19. T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T. Yanagida, Nature 374, 555 (1995)

    Article  CAS  Google Scholar 

  20. C. Bühler, K. Stöckli, M. Auer, in Methods and applications of fluorescence spectroscopy, Sringer Verlag, 2000.

    Google Scholar 

  21. M. Ehrenberg, R. Rigler, “Rotational Brownian motion and fluorescence intensity fluctuation”, Chem. Phys. 4, 390 (1974)

    Article  CAS  Google Scholar 

  22. E.L. Elson, D. Magde, “Fluorescence correlation spectroscopy”, Biopolymers 13, 1 (1974)

    Article  CAS  Google Scholar 

  23. H. Rigneault, S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity, ” Physical Review A, 54, 2356–2368 (1996)

    Article  CAS  Google Scholar 

  24. C. Begon, H. Rigneault, P. Jonsson, J. G. Rarity, “Spontaneous emission control with planar dielectric structures: an asset for ultrasensitive fluorescence analysis”, Single Molecules 1, 207–214 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Provin, C., Monneret, S., Le Gall, H., Rigneault, H., Lenne, PF., Giovannini, H. (2001). New process for manufacturing ceramic microfluidic devices for microreactor and bioanalytical applications. In: Matlosz, M., Ehrfeld, W., Baselt, J.P. (eds) Microreaction Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56763-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56763-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62706-4

  • Online ISBN: 978-3-642-56763-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics