Advertisement

Opioid and Antiopioid Peptides: A Model of Yin-Yang Balance in Acupuncture Mechanisms of Pain Modulation

  • J.-S. Han

Abstract

At first glance, sharp differences exist between medicinal practices originating in the east and in the west. While Western medicine is more technological, relies on quantitative measurements, and is increasingly evidence-based, Eastern medicine is minimally invasive, relies on qualitative assessments, and remains largely experience-based. However, one concept shared by both medical systems is that most if not all physiological functions are regulated by activities posessing opposite effects. To consider only a few examples, blood sugar is decreased by insulin and increased by glucagon, calcitonin and parathyroid hormone act in opposing directions to regulate calcium levels in blood and tissues, and, generally speaking, the sympathetic and parasympathetic systems have contrasting functions in regulating many aspects of our internal environment. These phenomena can be regarded as reflections of the yin-yang balance described in traditional Chinese medicine. Thus, the “homeostasis” of Western medicine has long been recognized as “dynamic balance” in the classical texts of Chinese medicine.

Keywords

Opioid Receptor Opioid Peptide Opiate Receptor Morphine Tolerance Morphine Analgesia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hughes J, Smith TW, Kosteritz HW et al (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579PubMedCrossRefGoogle Scholar
  2. 2.
    Ungar G, Ungar A, Malin DH et al (1977) Brain peptides with opiate antagonistic action: TheIR possible role in tolerance and dependence. Psychoneuroendocrinol 2:1–10CrossRefGoogle Scholar
  3. 3.
    Han JS, Ding XZ, Fan SG (1985) Is CCK-8 a candidate for endogenous antiopioid peptide substrate? Neuropeptides 5:399–402PubMedCrossRefGoogle Scholar
  4. 4.
    Han JS, Terenius L (1982) Neurochemical basis of acupuncture analgesia. Annu Rev Pharmacol Toxicol 22:193–220PubMedCrossRefGoogle Scholar
  5. 5.
    Meunier JC, Mollereau C, Toll L et al (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535PubMedCrossRefGoogle Scholar
  6. 6.
    Pomeranz B, Chiu D (1976) Naloxone blocks acupuncture analgesia and causes hyperalgesia: Endorphin is implicated. Life Sci 19:1757–1762PubMedCrossRefGoogle Scholar
  7. 7.
    Mayer DJ, Price DD, Rafii A (1977) Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone. Brain Res 121:368–372PubMedCrossRefGoogle Scholar
  8. 8.
    Han JS, Wang Q (1992) Mobilization of specific neuropeptides by peripheral stimulation of identified frequencies. News Physiol Sci USA 7:176–180Google Scholar
  9. 9.
    Chen XH, Han JS (1992) Analgesia induced by electroacupuncture of different frequencies is mediated by different types of opioid receptors: Another cross-tolerance study. Beh Brain Res 47:143–149CrossRefGoogle Scholar
  10. 10.
    Chen XH, Han JS (1992) All three types of opioid receptors in the spinal cord are important for 2–15 Hz electroacupuncture analgesia. Eur J Pharmacol 211:203–210PubMedCrossRefGoogle Scholar
  11. 11.
    Cox BA, Goldstein A, Li CH (1976) Opiate activity of a peptide, β-lipotropin (61–91) derived from β-lipotropin. Proc Natl Acad Sci USA 73:1821–1823PubMedCrossRefGoogle Scholar
  12. 12.
    Goldstein A, Tachibana S, Lowrey LI et al (1979) Dynorphin (1–13), an extraordinary potent opioid peptide. Proc Natl Acad Sci USA 76:6666–6670PubMedCrossRefGoogle Scholar
  13. 13.
    Zadina JE, Lackler L, Ge LJ, Kastin AJ (1997) A potent and selective endogenous agonist for µ-opiate receptor. Nature 386:499–502PubMedCrossRefGoogle Scholar
  14. 14.
    He CM, Han JS (1990) Attenuation of low rather than highfrequency electroacupuncture analgesia by microinjection of β-endorphin antiserum into the periaqueductal gray in rats. Acupuncture. Sci Intl J 1:94–99Google Scholar
  15. 15.
    Han Z, Jiang YH, Wan Y, Wang Y, Chang JK, Han JS (1999) Endomorphin 1 mediates 2 Hz but not 100 Hz electroacupuncture analgesia in the rat. Neurosci Lett: 274:75–78PubMedCrossRefGoogle Scholar
  16. 16.
    Fei H, Xie GX, Han JS (1987) Low and high frequency electroacupuncture stimulation releases met-enkephalin and dynorphin A in rat spinal cord. Chin Sci Bull 1987 34:703–705Google Scholar
  17. 17.
    Han JS, Chen XH, Sun SL et al (1991) Effect of low and highfrequency TENS on met-enkephalin-Arg-Phe and dynorphin A immunoreactivity in human lumbar CSF. Pain 47:295–298PubMedCrossRefGoogle Scholar
  18. 18.
    Wang Q, Mao LM, Han JS (1990) The arcuate nucleus of hypothalamus mediates low but not high frequency electroacupuncture analgesia in rats. Brain Res 513:60–66PubMedCrossRefGoogle Scholar
  19. 19.
    Wang Q, Mao LM, Han JS (1990) Analgesic electrical stimulation of the hypothalamic arcuate nucleus: Tolerance and its cross-tolerance to 2 Hz or 100 Hz electroacupuncture. Brain Res 518:40–46PubMedCrossRefGoogle Scholar
  20. 20.
    Wang Q, Mao LM, Han JS (1990) Diencephalon as a cardinal neural structure for mediating 2 Hz but not 100 Hz electroacupuncture-induced tail flick latency suppression. Behav Brain Res 37:149–156PubMedCrossRefGoogle Scholar
  21. 21.
    Wang Q, Mao LM, Han JS (1990) The role of PAG in mediation of analgesia produced different frequencies electroacupuncture stimulation in rats. Intl J Neurosci 53:167–172CrossRefGoogle Scholar
  22. 22.
    Wang Q, Mao LM, Han JS (1991) The role of parabrachial nucleus in high frequency electroacupuncture analgesia in rats. Chin J Physiol Sci 7:363–367Google Scholar
  23. 23.
    Han JS, Tang J, Huang BS (1979) Acupuncture tolerance in rats: Antiopiate substrates implicated. Chin Med J 92:625–627Google Scholar
  24. 24.
    Ren MF, Han JS (1979) Rat tail flick acupuncture analgesia model. Chin Med J 92:576–582Google Scholar
  25. 25.
    Han JS, Tang J, Huang BS et al (1979) Acupuncture tolerance in rats: Antiopiate substrates implicated. Chin Med J 92:625–627Google Scholar
  26. 26.
    Han JS (1992) The role of CCK in electroacupuncture analgesia and electroacupuncture tolerance. In: CT Dourish, SJ Cooper, SD Iversen, LL Iversen (eds) Multiple cholecystokinin receptors in the CNS. Oxford University Press, Oxford, pp 480–502Google Scholar
  27. 27.
    Han JS (1995) Molecular events underlying the antiopioid effect of CCK-8 in the central nervous system. In: AC Cuello, B Collier (eds) Pharmacological sciences: Perspectives for research and therapy in the late 1990s. Birkhauser Verlag, Basel, pp 199–207CrossRefGoogle Scholar
  28. 28.
    Han JS (1995) Cholecystokinin octapeptide (CCK-8): A negative feedback control mechanism for opioid analgesia. Prog Brain Res 105:263–271PubMedCrossRefGoogle Scholar
  29. 29.
    Bian JT, Sun MZ, Xu MY, Han JS (1993) Antagonism by CCK-8 of the antinociceptive effect of electroacupuncture on pain-related neurons in nucleus parafascicularis of the rat. Asia Pacific J Pharmacol 8:90–97Google Scholar
  30. 30.
    Li Y, Han JS (1989) Cholecystokinin octapeptide antagonizes morphine analgesia in periaqueductal gray of the rat. Brain Res 480:105–110PubMedCrossRefGoogle Scholar
  31. 31.
    Zhou ZF, Du MY, Jian Y et al (1981) Effect of intracerebral microinjection of naloxone on acupuncture- and morphine-analgesia in the rabbit. Sci Sinica 24:1166–1178PubMedGoogle Scholar
  32. 32.
    Zhou ZF, Xuan YT, Han JS (1984) Analgesic effect of morphine injected into habenula, nucleus accumbens, or amygdala of rabbits. Acta Pharmacol Sin 5:150–153Google Scholar
  33. 33.
    Pu SF, Zhuang HX, Han JS (1994) CCK-8 antagonizes morphine analgesia in nucleus accumbens of the rat via the CCK-B receptor. Brain Res 657:159–164PubMedCrossRefGoogle Scholar
  34. 34.
    Wang XJ, Wang XM, Han JS (1990) CCK-8 antagonize opioid analgesia mediated by μ- and but not δ-receptors in the spinal cord of the rat. Brain Res 523:5–10PubMedCrossRefGoogle Scholar
  35. 35.
    Dickenson AH, Sullivan AF, Magnuson DS (1992) CCK and opioid interaction in the spinal cord. In: CT Dourish, SJ Cooper, SD Iversen et al (eds) Multiple CCK receptors in the CNS. Oxford University Press, Oxford, pp 503–510Google Scholar
  36. 36.
    Wang XJ, Fan SG, Ren MF, Han JS (1989) Cholecystokinin-8 suppressed 3H-etorphine binding to rat brain opiate receptors. Life Sci 45:117–123PubMedCrossRefGoogle Scholar
  37. 37.
    Wang XJ, Han JS (1990) Modification by CCK-8 of the binding of (μ-, δ-, and opioid receptors. J Neurochem 55 1379–1382PubMedCrossRefGoogle Scholar
  38. 38.
    Liu NJ, Xu T, Xu C, Li CQ et al (1995) Cholecystokinin octapeptide reverses μ opioid receptor-mediated inhibition of calcium current in rat dorsal root ganglion neurons. J Pharmacol Exp Ther 1995 275:1293–1299Google Scholar
  39. 39.
    Xu T, Liu NJ, Li CQ et al (1996) Cholecystokinin octapeptide reverses the χ opioid receptor-mediated depression of calcium current in rat dorsal root ganglion neurons. Brain Res 730:207–211PubMedGoogle Scholar
  40. 40.
    Zhang LJ, Lu XY, Han JS (1992) Influence of CCK-8 on phosphoinositide turnover in neonatal rat brain cells. Biochem J 285:847–850PubMedGoogle Scholar
  41. 41.
    Zhang LJ, Wang XJ, Han JS (1993) Modification of opioid receptors and uncoupling of receptors from G protein as possible mechanisms underlying suppression of opioid binding by CCK-8. Chin Med Sci J 8:1–4PubMedGoogle Scholar
  42. 42.
    Zhang LJ, Han JS (1994) Regulation by lithium of the antagonistic effect of CCK-8 on ohmefentanyl-induced antinociception. Neuropharmacol 33:123–126CrossRefGoogle Scholar
  43. 43.
    Wang JF, Ren MF, Han JS (1992) Mobilization of calcium from intracellular store as a possible mechanism underlying the antiopioid effect of CCK-8. Peptides 13:947–951PubMedCrossRefGoogle Scholar
  44. 44.
    Zhou Y, Sun YH, Zhang ZW et al (1993) Increased release of immunoreactive CCK-8 and enhancement of electroacupuncture analgesia by CCK-8 antagonist in rat spinal cord. Neuropeptides 24:139–144PubMedCrossRefGoogle Scholar
  45. 45.
    Sheng S, Tian JB, Han JS (1995) Electroacupuncture induces spinal CCK release via μ-and opioid receptors. Chin Sci Bull 40:555–557Google Scholar
  46. 46.
    Pu SF, Xhuang HX, Han JS (1994) CCK-8 gene expression in rat amygdaloid neurons: Normal distribution and effect of morphine tolerance. Mol Brain Res 21:183–189PubMedCrossRefGoogle Scholar
  47. 47.
    Zhou Y, Sun YH, Zhang ZW, Han JS (1992) Accelerated expression of CCK gene in the brain of rats rendered tolerant to morphine. NeuroReport 3:1121–1123PubMedCrossRefGoogle Scholar
  48. 48.
    Ding XZ, Fan SG, Zhou JP, Han JS (1986) Reversal of tolerance to morphine analgesia but no potentiation of morphine–induced analgesia by antiserum against CCK-8. Neuropharmacol 25: 1155–1160CrossRefGoogle Scholar
  49. 49.
    Sun YH, Zhou Y, Han JS (1995) Accelerated release and production of CCK-8 in CNS of rats during prolonged electroacupuncture stimulation. Chin J Neurosci 2:83–88Google Scholar
  50. 50.
    Bian JT, Sun MZ, Han JS (1993) Reversal of electroacupuncture tolerance by CCK-8 antiserum: An electrophysiological study on pain-related neurons in nucleus parafascicularis of the rat. Intl J Neurosci 72:15–29CrossRefGoogle Scholar
  51. 51.
    Liu SX, Luo F, Shen S et al (1999) Relationship between the analgesic effect of electroacupuncture and CCK-8 content in spinal perfusate in rats. Chin Sci Bull 44:240–243CrossRefGoogle Scholar
  52. 52.
    Zhou Y, Sun YH, Zhang ZW, Han JS (1993) Increased release of immunoreactive CCK-8 by morphine and potentiation of opioid analgesia by CCK-B receptor antagonist L-365260 in rat spinal cord. Eur J Pharmacol 234:147–154PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang LX, Wu M, Han JS (1992) Suppression of audiogenic epileptic seizure by intracerebral injection of a CCK gene vector. NeuroReport 03:700–702CrossRefGoogle Scholar
  54. 54.
    Zhang LX, Li XL, Wang L, Han JS (1997) Rats with decreased brain CCK levels show increased responsiveness to peripheral electrical stimulation-induced analgesia. Brain Res 745:158–164PubMedCrossRefGoogle Scholar
  55. 55.
    Tang NM, Dong HW, Wang XM et al (1997) Cholecystokinin antisense RNA increases the analgesic effect induced by electroacupuncture or low dose morphine: Conversion of low responders into high responders. Pain 71:71–80PubMedCrossRefGoogle Scholar
  56. 56.
    Darland T, Heinricher MM, Grandy DK (1998) Orphanin FQ nociceptin: A role in pain and analgesia, but so much more. Trends Neurosci 21:215–221PubMedCrossRefGoogle Scholar
  57. 57.
    Tian JH, Xu W, Fang Y et al (1997) Bidirectional modulatory effect of OFQ on morphine-induced analgesia: Antagonism in brain and potentiation in spinal cord of the rat. Br J Pharmacol 20:676–680CrossRefGoogle Scholar
  58. 58.
    Tian JH, Zhang W, Fang Y et al (1998) Endogenous orphanin FQ: Evidence for a role in the modulation of electroacupuncture analgesia and development of tolerance to analgesia produced by morphine and electroacupuncture. Br J Pharmacol 124:21–26PubMedCrossRefGoogle Scholar
  59. 59.
    Yuan L, Han Z, Chang JK, Han JS (1999) Accelerated release and production of orphanin FQ in brain of chronic morphine tolerant rats. Brain Res 826:330–334PubMedCrossRefGoogle Scholar
  60. 60.
    Tian JH, Xu W, Zhang W et al (1997) Involvement of endogenous orphanin FQ in electroacupuncture-induced analgesia. NeuroReport 8:497–500PubMedCrossRefGoogle Scholar
  61. 61.
    Okuda-Ashitaka E, Minami T, Tachibana S et al (1998) Nocistatin, a peptide that blocks nociceptin action in pain transmission. Nature 392:286–289PubMedCrossRefGoogle Scholar
  62. 62.
    Zhao CS, Li BS, Zhao GY et al (1999) Nocistatin reversed the effect of orphanin FQ nociception in antagonizing morphine analgesia. NeuroReport 10:297–299PubMedCrossRefGoogle Scholar
  63. 63.
    Kaneko S, Tamura S, Takagi H (1985) Purification and identification of endogenous antiopioid substance from bovine brain. Biochem Biophys Res Commun 587–593Google Scholar
  64. 64.
    Wang KW, Han JS (1987) Angiotensin II antagonizes morphine analgesia: Effective by intracereb-roventricular injection but not by intrathecal injection. Chinese Sci Bull 33:123–128Google Scholar
  65. 65.
    Wang XM, Han JS (1989) Antagonism to morphine analgesia and involvement in morphine tolerance of angiotensin II in periaqueductal gray of the rabbit. Chinese Sci Bull 33:149–152Google Scholar
  66. 66.
    Wang KW, Han JS (1989) Evidence for involvement of brain angiotensin II in tolerance to electroacupuncture analgesia in rats. Chin J Appl Physiol 5:32–36Google Scholar
  67. 67.
    Wang KW, Han JS (1989) Evidence for brain angiotensin II being involved in morphine tolerance in the rat. Chin J Pharmacol Toxicol 3:7–11Google Scholar
  68. 68.
    Wang KW, Han JS (1999) Accelerated synthesis and release of angiotensin II in the rats brain during electroacupuncture tolerance. Sci Sinica (B) 33:686–693Google Scholar
  69. 69.
    Gao RW, Wang KW, Han JS (1989) Accelerated angiotensinogen gene expression in the brain of the rat made tolerance to morphine and electroacupuncture analgesia. Acta Physiol Sin 41:299–303Google Scholar
  70. 70.
    Sheng S, Li J, Wang XM et al (1989) Angiotensin II release and antielectroacupuncture analgesia in spinal cord. Acta Physiol Sin 41:179–183Google Scholar
  71. 71.
    Wang KW, Han JS (1989) Possible mechanisms of the antiopioid activity of angiotensin II. J Beijing Med Univ 21:7–9Google Scholar
  72. 72.
    Wang XM, Wang XJ, Han JS (1989) Antagonistic effects of angiotensin II and morphine on synaptosomal calcium uptake. Acta Physiol Sin 41:179–183Google Scholar
  73. 73.
    Smock T, Fields HL (1989) ACTH1-24 blocks opiate-induced analgesia in the rat. Brain Res 212:202–206CrossRefGoogle Scholar
  74. 74.
    Hammonds RG, Li CH (1984) Beta-endorphin (1–27) is an antagonist of beta-endorphin analgesia. Proc Natl Acad Sci (USA) 81:1389–1390CrossRefGoogle Scholar
  75. 75.
    Han NL, Bian ZB, Luo F, Han JS (1997) Antagonistic effect of CCK-8 and angiotensin II in antagonizing morphine-induced analgesia in rats. Chin J Pain Med 3:233–237Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • J.-S. Han

There are no affiliations available

Personalised recommendations