On the Evaluation of Atmospheric Models: Modelled Ozone Values Compared to Results from Field Campaigns

  • K. H. Schlünzen
  • A. Ebel
  • C.-J. Lenz
  • F. Müller
  • E. Schaller
  • A. Wenzel
Conference paper

Abstract

Ozone is the most important environmental atmospheric pollutant in Europe during summer time. It is photochemically formed from anthropogenic emissions (mainly traffic) and from biogenic emissions of nitrogen oxides (NOx) and hydrocarbons (NMVOC) under clear sky and high radiation conditions. Since high ozone values may cause health problems and may be harmful to plants, ozone concentrations are not only monitored but are also intended to be forecasted. For this purpose, mesoscale transport and chemistry models having different horizontal and vertical coverage and resolution are used. The quality of these models may be evaluated by comparing model results with measurements from field campaigns or with routine observations. However, to decide on the general model performance an evaluation strategy should be used, which has to be specified with respect to a set of target parameters.

Keywords

Europe Ozone Hydrocarbon Assimilation Stratification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cox R., Bauer B.L. and Smith T. (1998): Mesoscale model intercomparison. Bull. Am. Met. Soc. 79, pp. 265–283.CrossRefGoogle Scholar
  2. Schaller E., Ebel A., Hass H., Hellmuth O., Jacob D., Langmann B., Memmesheimer M., Müller F., Nester K., Schlünzen K.H. and Wenzel A. (2000): Comparative evaluation of several air quality modelling systems based on three experimental data sets. J. Atmosph. Chemistry; submitted.Google Scholar
  3. Schalter E. and Wenzel A. (1999): Evaluierung regionaler atmosphärischer Chemie-Transport-Modelle, Fall 1: TRACT, 16.9.1992, 13–17 Uhr MES. Lehrstuhl fur Umweltmeteorologie, Brandenburgische Universität Cottbus, p. 89Google Scholar
  4. Schaller E. and Wenzel A. (2000): Evaluierung regionaler atmosphärischer Chemie-Transport-Modelle, Fall 3: FLUMOB, 22.07.94–27.07.94. in preparation.Google Scholar
  5. Schlünzen K.H., Hinneburg D., Knoth O., Lambrecht M., Leitl B., Lopez S., Lüpkes C., Panskus H., Renner E., Schatzmann M., Schoenemeyer T., Trepte S. and Wolke R. (2000b): Flow and transport in the obstacle layer — First results of the micro-scale model MITRAS. J. Atmosph. Chemistry, submitted.Google Scholar
  6. Schlünzen K.H., Schaller E. and Ebel A. (2000a): An evaluation strategy for mesoscale atmospheric chemistry transport models. in preparation.Google Scholar
  7. Tilmes S., Mohnen V. and Schaller E. (2000): TFS model evaluation, case 2: NRW, 26 and 27-July-1994. Lehrstuhl für Umweltmeteorologie, Brandenburgische Technische Universität Cottbus, p. 128.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • K. H. Schlünzen
    • 1
  • A. Ebel
    • 2
  • C.-J. Lenz
    • 1
    • 3
  • F. Müller
    • 1
    • 3
  • E. Schaller
    • 4
  • A. Wenzel
    • 4
  1. 1.Meteorologisches InstitutUniversität HamburgGermany
  2. 2.EURAD Projekt, Institut für Geophysik und MeteorologieUniversität zu KölnGermany
  3. 3.Max-Planck-Institut für MeteorologieHamburgGermany
  4. 4.Lehrstuhl f. UmweltmeteorologieBrandenburgische Technische UniversitätCottbusGermany

Personalised recommendations