Skip to main content

Vibrational Studies of Ultra-Thin Oxides and Initial Silicon Oxidation

  • Chapter
Fundamental Aspects of Silicon Oxidation

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 46))

Abstract

Over the past two decades, infrared absorption spectroscopy (IRAS) has emerged as a preeminent technique for studying semiconductor surface and interface passivation [1]. For example, it has played a central role in identifying the nature of the HF induced passivation by hydrogen of Si surfaces [26] and, more recently, in describing the microscopic mechanism of surface oxidation [79]. In such studies not only can the nature of the surface termination (SiHx,(x=1–3), or SiOx,(x=0–2)) be determined, but the orientation of the various species can also be quantified, thus providing structural as well as chemical information. At present, IRAS exhibits sufficiently high sensitivity that it is possible to detect as little as 1% of a hydrogen monolayer. This effectively allows the characterization of minority surface species (steps, defects) as well as of the majority surface termination. In addition, the high spectral resolution afforded by IRAS can be utilized to distinguish subtle differences in chemical environment (due to the presence of dangling bonds, for example) and to unravel complex dynamical effects, such as coupling between isolated surface modes and the substrate phonons or electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. J. Chabal, in M. Balkanski (Ed.): Optical Properties of Semiconductors, 2, Elsevier, p. 187, Amsterdam 1994.

    Google Scholar 

  2. E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, T. B. Bright, Phys. Rev. Lett., 56, 656 (1988).

    Google Scholar 

  3. V. A. Burrows, Y. J. Chabal, G. S. Higashi, K. Raghavachari, J. Appl. Phys. 53, 998 (1988).

    CAS  Google Scholar 

  4. P. Dumas and Y. J. Chabal, J. Vac. Sci. Technol. A 10, 2160 (1992).

    Article  CAS  Google Scholar 

  5. P. Jakob, Y. J. Chabal, J. Chem. Phys. 95, 2897 (1991).

    Article  CAS  Google Scholar 

  6. M. A. Hines, Y. J. Chabal, T. D. Harris, A. L. Harris, J. Chem. Phys. 101, 8055 (1994).

    Article  CAS  Google Scholar 

  7. M. K. Weldon, B. B. Stefanov, K. Raghavachari, Y. J. Chabal, Phys. Rev. Lett. 79, 2851 (1997).

    Article  CAS  Google Scholar 

  8. B. B. Stefanov, A. B. Gurevich, M. K. Weldon, Y. J. Chabal, K. Raghavachari, Phys. Rev. Lett., 81, 3908 (1998).

    Article  CAS  Google Scholar 

  9. K. T. Queeney, M. K. Weldon, J. P. Chang, Y. J. Chabal, A. B. Gurevich, J. Sapjeta, R. L. Opila, J. Appl. Phys. 87, 1322 (2000).

    Article  CAS  Google Scholar 

  10. C. Martinet, R. A. B. Devine, J. Appl. Phys. 77, 4343 (1995).

    Article  CAS  Google Scholar 

  11. I. W. Boyd, J. I. B. Wilson, J. Appl. Phys. 62, 3195 (1987).

    Article  CAS  Google Scholar 

  12. H. Z. Massoud, E. H. Poindexter, C. R. Helms, The Electrochemical Society, Pennington, NJ 1988–1996.

    Google Scholar 

  13. P. G. Pai, S. S. Chao, Y. Takagi, G. Lucovsky, J. Vac. Sci. Technol. A 4, 689 (1986).

    Article  CAS  Google Scholar 

  14. C. H. Bjorkman, T. Yamazaki, S. Miyazaki, M. Hirose, Intern. Conf. on Advanced Microelectronic Devices and Processing (Sendai), FTIR-ATR characterization of ultra-thin SiO2 films on Si, pp. 431 (1994).

    Google Scholar 

  15. R. A. B. Devine, Appl. Phys. Lett. 68, 3108 (1996).

    Article  CAS  Google Scholar 

  16. S. Miyazaki, H. Nishimura, M. Fukuda, L. Ley, J. Ristein, Appl. Surf. Sci. 113/114, 585 (1997).

    Article  CAS  Google Scholar 

  17. T. Ohwaki, M. Takeda, Y. Takai, Jpn. J. Appl. Phys. 36, 5507 (1997).

    Article  CAS  Google Scholar 

  18. F. L. Galeener, A. J. Leadbetter, M. W. Stringfellow, Phys. Rev. B 27, 1052 (1983).

    Article  CAS  Google Scholar 

  19. R. J. Collins and H. Y. Fan, Phys. Rev. 93, 674 (1954).

    Article  CAS  Google Scholar 

  20. S. Watanabe, J. Chem. Phys. 108, 5965 (1998).

    Article  CAS  Google Scholar 

  21. Y. J. Chabal, A. L. Harris, K. Raghavachari, J. C. Tully, Int. J. Mod. Phys. B 7, 1031 (1993).

    Article  CAS  Google Scholar 

  22. K. Ishikawa, H. Ogawa, S. Fujimura, J. Appl. Phys. 85, 4076 (1999).

    Article  CAS  Google Scholar 

  23. D. E. Aspnes, Am. J. Phys. 50, 704 (1982).

    Article  Google Scholar 

  24. D. A. G. Bruggeman, Ann. Phys. 24, 636 (1935).

    Article  CAS  Google Scholar 

  25. A. Estève, M. D. Rouhani, D. Estève, Materials Research Society (San Francisco, CA), Monte Carlo Study of the initial State of the Silicon Oxidation at the Atomic Scale (1999).

    Google Scholar 

  26. A. Estève, M. D. Rouhani, D. Estève, Materials Science in Semiconductor Processing 3, 47 (2000).

    Article  Google Scholar 

  27. R. J. Jaccodine, W. A. Schlegel, J. Appl. Phys. 37, 2429 (1966).

    Article  CAS  Google Scholar 

  28. T. Yamazaki, C. H. Bjorkman, S. Miyazaki, M. Hirose, 22nd International Conf. on the Physics of Semiconductors (Vancouver), Local Structure of Ultra-thin (3–25 nm) SiO2 Thermally Grown on Si (100) and (111) Surfaces, pp. 2653 (1994).

    Google Scholar 

  29. F. L. Galeener, Phys. Rev. B 19, 4292 (1979).

    Article  CAS  Google Scholar 

  30. E. D. Palik, Academic Press, Inc 1985.

    Google Scholar 

  31. D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, G. Timp, Nature 399, 758 (1999).

    Article  CAS  Google Scholar 

  32. Y. J. Chabal, S. B. Christman, Phys. Rev. B 29, 6974 (1984).

    Article  CAS  Google Scholar 

  33. H. N. Waltenberg, J. J. T. Yates, Chem. Rev. 95, 1589 (1995).

    Article  Google Scholar 

  34. L. Andersohn, U. Kohler, Surf. Sci. 284, 77 (1993).

    Article  CAS  Google Scholar 

  35. A. B. Gurevich, B. B. Stefanov, M. K. Weldon, Y. J. Chabal, and K. Raghavachari, Phys. Rev. B 58, R13434 (1998).

    Article  Google Scholar 

  36. B. B. Stefanov, K. Raghavachari, Appl. Phys. Lett. 73, 824 (1998).

    Article  CAS  Google Scholar 

  37. B. B. Stefanov, K. Raghavachari, Surf. Sci. 389, L1159 (1997).

    Article  Google Scholar 

  38. M. K. Weldon, K. T. Queeney, A. B. Gurevich, B. B. Stefanov, Y. J. Chabal, K. Raghavachari, J. Chem. Phys. 113, 2440 (2000).

    Article  CAS  Google Scholar 

  39. M. K. Weldon, K. T. Queeney, A. B. Gurevich, Y. J. Chabal, B. B. Stefanov, K. Raghavachari, J. Vac. Sci. Technol. B 17, 1795 (1999).

    Article  CAS  Google Scholar 

  40. A. Esteve, Y. J. Chabal, K. Raghavachari, M. K. Weldon, In preparation (2001).

    Google Scholar 

  41. K. T. Queeney, M. K. Weldon, A. Estève, X. Xiang, Y. J. Chabal, K. Raghavachari, Si = 0 formation on Si(100)-(2 x 1), In preparation (2001).

    Google Scholar 

  42. T. Hattori, H. N. H. K. Takahashi, Microelec. Eng. 48, 17 (1999).

    Article  CAS  Google Scholar 

  43. M. Fujimura, K. Inoue, H. Nohira, T. Hattori, Appl. Surf. Sci. 162, 62 (2000).

    Article  Google Scholar 

  44. A. Pasquarello, J. Sarnthein, R. Car, Phys. Rev. B 57, 14133 (1998).

    Article  CAS  Google Scholar 

  45. A. Pasquarello, R. Car, Phys. Rev. Lett. 79, 1766 (1997).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chabal, Y.J., Weldon, M.K., Queeney, K.T., Estève, A. (2001). Vibrational Studies of Ultra-Thin Oxides and Initial Silicon Oxidation. In: Chabal, Y.J. (eds) Fundamental Aspects of Silicon Oxidation. Springer Series in Materials Science, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56711-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56711-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62583-1

  • Online ISBN: 978-3-642-56711-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics