Advertisement

INFUSE-Eine datenbankbasierte Plattform für die Informationsfusion

  • Oliver Dunemann
  • Ingolf Geist
  • Roland Jesse
  • Gunter Saake
  • Kai-Uwe Sattler
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

Informationsfusion als Prozess der Integration und Interpretation heterogener Daten mit dem Ziel der Gewinnung neuer Informationen einer höheren Qualität eröffnet eine Vielzahl von Anwendungsgebieten. Gleichzeitig erfordert dieser Prozess aber auch eine enge Verzahnung der bislang häufig noch isoliert vorliegenden Werkzeuge und Techniken zum Zugriff auf heterogene Datenquellen, deren Integration, Aufbereitung, Analyse und Visualisierung. In diesem Beitrag werden erste Ergebnisse der Entwicklung einer Workbench vorgestellt, die durch konsequente Nutzung von Datenbanktechniken eine durchgängige Unterstützung dieser Schritte ermöglicht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [AMS+96]
    R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.L Verkamo. Fast Discovery of Association Rules. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, chapter 12, pages 307–328. AAAI Press / The MIT Press, Menlo Park, California, 1996.Google Scholar
  2. [Bar98]
    Lyn Bartram. Enhancing Visualizations With Motion. In Hot Topics: Information Visualization 1998, North Carolina, USA, 1998.Google Scholar
  3. [BLN86]
    C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis of Methodologies for Database Schema Integration. ACM Computing Surveys, 18(4):323–364, December 1986.CrossRefGoogle Scholar
  4. [BM99]
    Jörg Baetge and Manolopoulous. Bilanz-ratings zur beurteilung der unternehmensbonität-entwicklung und einsatz des bbr baetge-bilanz-rating im rahmen des benchmarking. Die Unternehmung, (5):351–371, 1999.Google Scholar
  5. [CD97]
    S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP Technology. SIGMOD Record, 26(1), 1997.Google Scholar
  6. [CDH+99]
    John Clear, Debbie Dunn, Brad Harvey, Michael L. Heytens, Peter Lohman, Abhay Mehta, Mark Melton, Lars Rohrberg, Ashok Savasere, and Robert M. Wehrmeister ans Melody Xu. NonStop SQL/MX Primitives for Knowledge Discovery. In Proc. 5th ACM SIGKDD Int. Conference on Knowledge Discovery and Data Mining 1999, San Diego, CA USA, pages 425–429, 1999.Google Scholar
  7. [CFB99]
    Surajit Chaudhuri, Usama M. Fayyad, and Jeff Bernhardt. Scalable Classification over SQL Databases. In Proceedings of the 15th International Conference on Data Engineering, 1999, Sydney, Austrialia, pages 470–479. IEEE Computer Society, 1999.Google Scholar
  8. [Cha98]
    Surajit Chaudhuri. Data Mining and Database Systems: Where is the Intersection? Data Engineering Bulletin, 21(1):4–8, 1998.Google Scholar
  9. [CMN99]
    S. Chaudhuri, R. Motwani, and V.R. Narasayya. On Random Sampling over Joins. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data, June 1-3, 1999, Philadephia, Pennsylvania, USA, pages 263–274. ACM Press, 1999.Google Scholar
  10. [CSS99]
    S. Conrad, G. Saake, and K. Sattler. Informationsfusion—Herausforderungen an die Datenbanktechnologie. In A. P. Buchmann, editor, Datenbanksysteme in Büro, Technik und Wissenschaft, BTW’99, Gl-Fachtagung, Freiburg, März 1999, Informatik aktuell, pages 307–316, Berlin, 1999. Springer-Verlag.Google Scholar
  11. [DWI00]
    Data Extraction, Transformation, and Loading Tools (ETL), http://www.dwinfocenter.org/clean.html, August 2000.
  12. [EicOO]
    Stephen G. Eick. Visualizing Multi-Dimensional Data. Computer Graphics, pages 61–67, February 2000.Google Scholar
  13. [Elk97]
    Charles Elkan. Boosting and Naive Bayesian Learning. Technical report, Dept. of Computer Science and Engineering, UCSD, September 1997.Google Scholar
  14. [FPSSU96]
    U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining. AAAI Press / The MIT Press, Menlo Park, California, 1996.Google Scholar
  15. [GLRS93]
    J. Grant, W. Litwin, N. Roussopoulos, and T. Sellis. Query Languages for Relational Multidatabases. The VLDB Journal, 2(2): 153–171, April 1993.CrossRefGoogle Scholar
  16. [Han98]
    Jiawei Han. Towards On-Line Analytical Mining in Large Databases. ACM SIGMOD Record, (27):97–107, 1998.CrossRefGoogle Scholar
  17. [HK97]
    Marti A. Hearst and Chandu Karadi. Cat-a-Cone: An Interactive Interface for Specifying Searches and Viewing Retrieval Results using a Large Category Hierarchy. In Proceedings of the 20 th, Philadelphia, PA, July 1997.Google Scholar
  18. [HMN+99]
    Laura M. Haas, Renée J. Miller, B. Niswonger, Mary Tork Roth, Peter M. Schwarz, and Edward L. Wimmers. Transforming heterogeneous data with database middleware: Beyond integration. IEEE Data Engineering Bulletin, 22(l):31–36, 1999.Google Scholar
  19. [LSS96]
    L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. SchemaSQL—A Language for Interoperability in Relational Multi-database Systems. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, editors, Proc. of the 22nd Int. Conf on Very Large Data Bases, VLDB’96, Bombay, India, September 3-6, 1996, pages 239–250, San Francisco, CA, 1996. Morgan Kaufmann Publishers.Google Scholar
  20. [MMC99]
    Klaus Mueller, Torsten Möller, and Roger Crawfis. Splatting Without The Blur. In Proceedings of IEEE Conference on Visualization 1999, pages 363–371, October 1999.Google Scholar
  21. [OR86]
    F. Olken and D. Rotem. Simple Random Sampling from Relational Databases. In W.W. Chu, G. Gardarin, S. Ohsuga, and Y. Kambayashi, editors, VLDB’86 Twelfth International Conference on Very Large Data Bases,August 25-28, 1986, Kyoto, Japan, Proceedings, pages 160–169. Morgan Kaufmann, 1986.Google Scholar
  22. [RH00]
    Vijayshankar Raman and Joseph M. Hellerstein. An Interactive Framework for Data Cleaning. http://control.cs.berkeley.edu/abc/,2000.Workingdraft.
  23. [SCS00]
    K.-U. Sattler, S. Conrad, and G. Saake. Adding Conflict Resolution Features to a Query Language for Database Federations. Australian Journal of Information Systems, 8(1): 116–125, 2000.Google Scholar
  24. [SML98]
    Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit—An Object-Oriented Approach to 3D Graphics. Prentice Hall PTR, 2. edition, 1998.Google Scholar
  25. [STA98]
    Sunita Sarawagi, Shiby Thomas, and Rakesh Agrawal. Integrating Mining with Relational Database Systems: Alternatives and Implications. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD 1998, Proceedings ACM SIGMOD International Conference on Management of Data, June 2-4, 1998, Seattle, Washington, USA, pages 343–354. ACM Press, 1998.Google Scholar
  26. [Vit87]
    J.S. Vitter. An Efficient Algorithm for Sequential Random Sampling. ACM Transactions on Mathematical Software, 13(1):58–67, March 1987.MathSciNetCrossRefGoogle Scholar
  27. [WZ99]
    Haixun Wang and Carlo Zaniolo. User-Defined Aggregates for Datamining. In 7999 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Oliver Dunemann
    • 1
  • Ingolf Geist
    • 1
  • Roland Jesse
    • 1
  • Gunter Saake
    • 1
  • Kai-Uwe Sattler
    • 1
  1. 1.Fakultät für InformatikUniversität MagdeburgMagdeburgGermany

Personalised recommendations