Verfahren zur Ähnlichkeitssuche auf 3D-Objekten

  • Martin Heczko
  • Daniel Keim
  • Dietmar Saupe
  • Dejan V. Vranić
Part of the Informatik aktuell book series (INFORMAT)


In diesem Papier wird die inhaltsbasierte Ähnlichkcitssuche auf Datenbanken von 3D-Modollon behandelt. Auf Objekte aus 3D-Datcnbankcn wird traditionell durch angehängte Strukturinformationen sowie Textanmerkungen zugegriffen, was jedoch für viele Anwendungen unzureichend ist und durch eine inhaltsbasierte Suche ergänzt werden muß. Das hier vorgestellte inhaltsbasierte SD-Modell- Suchsystem sucht ähnliche Modelle anhand eines gegebenen Modells, dessen Formbeschreibung automatisch generiert wird. Die vorgeschlagenen Merkmalsvektoren erfassen die 3D-Form und sind invariant gegenüber Translation, Rotation, Skalierung und Modifikation der Detailgenauigkeit. Geplant ist die Anwendung auf großen verteilten Datenbeständen der Computergrafik (VRML-Daten).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Mihael Ankerst, Bernhard Braunmüller, Hans-Peter Kriegel, and Thomas Seidl. Improving adaptable similarity query processing by using approximations. In VLDB’98, Proceedings of 24rd International Conference on Very Large Data Bases, New York City, New York, USA, pages 206–217. Morgan Kaufmann, 1998.Google Scholar
  2. [2]
    Mihael Ankerst, Gabi Kastenmüller, Hans-Peter Kriegel, and Thomas Seidl. 3D shape histograms for similarity search and classification in spatial databases. In Ralf Ilartmut Güting, Dimitris Papadias, and Frederick II. Lochovsky, editors, Lecture Notes in Computer Science, volume 1651, pages 207–226. Springer, 1999.Google Scholar
  3. [3]
    Mihael Ankerst, Hans-Peter Kriegel, and Thomas Seidl. A multistep approacii for shape similarity search in image databases. TKDE, 10(6):996–1004, 1998.Google Scholar
  4. [4]
    Jonathan Ashley, Myron Flickner, James L. Hafner, Denis Lee, Wayne Niblack, and Dragutin Petkovic. The query by image content (QBIC) system. In Michael J. Carey and Donovan A. Schneider, editors, Proceedings of the 1995 ACM SIGMOD, page 475. ACM Press, 1995.Google Scholar
  5. [5]
    A. Badel, J.P. Mornon, and S. Hazout. Searching for geometric molecular shape complementary using bidimensional surface profiles. Journal of Molecular Biology, 10:205–211, December 1992.Google Scholar
  6. [6]
    Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R*-tree: An efficient and robust access method for points and rectangles. In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ, pages 322–331. ACM Press, 1990.Google Scholar
  7. [7]
    Stefan Berchtold, Christian Böhm, II. V. Jagadish, Hans-Peter Kriegel, and Jörg Sander. Independent quantization: An index compression technique for high-dimensional data spaces. In Proceedings of the 16. Int. Conference on Data Engineering, pages 577–588. IEEE Computer Society, 2000.Google Scholar
  8. [8]
    Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The X-tree: An index structure for high-dimensional data. In T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda, editors, VLDBy96, Proceedings of 22th International Conference on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 28–39. Morgan Kaufmann, 1996.Google Scholar
  9. [9]
    Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access method for similarity search in metric spaces. In VLDB’97, Proceedings of 23rd International Conference on Very Large Data Bases, August 25-29, 1997, Athens, Greece, pages 426–435. Morgan Kaufmann, 1997.Google Scholar
  10. [10]
    Luigi Cinque, Stefano Levialdi, Kai A. Olsen, and A. Pellicano. Color-based image retrieval using spatial-chromatic histograms. In Proceedings of the IEEE International Conference on Multimedia Computing and Systems, volume II, pages 969–973. IEEE Computer Society, 1999.CrossRefGoogle Scholar
  11. [11]
    G. Dunn and B. Everitt. An Introduction to Mathematical Taxonomy. Cambridge University Press, Cambridge, MA, 1982.zbMATHGoogle Scholar
  12. [12]
    J.-R. Ohm et al. A multi-feature description scheme for image and video database retrieval. In IEEE Multimedia Signal Processing Workshop, Copenhagen. IEEE Computer Society, September 1999.Google Scholar
  13. [13]
    C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D.Petkovic, and W. Equitz. Efficient and effective querying by imagecontent. Journal of Intelligent Information Systems, 3:231–262, 1994.CrossRefGoogle Scholar
  14. [14]
    Christos Faloutsos and King-Ip Lin. Fastmap: A fast algorithm for indexing, datamining and visualization of traditional and multimedia dataseis. In Michael J. Carey and Donovan A. Schneider, editors, Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, San Jose, California, May 22-25, 1995, pages 163–174. ACM Press, 1995.Google Scholar
  15. [15]
    Michael Garland. Quadric-based polygonal surface simplification. Technical Report CMU-CS-99-105, Carnegie Mellon School of Computer Science, 1999. Ph.D. Dissertation.Google Scholar
  16. [16]
    Michael Garland and Paul S. Heckbert. QSlim simplification software,
  17. [17]
    Andrew S. Glassner. An Introduction to Ray Tracing. Academic Press, 1989.Google Scholar
  18. [18]
    MPEG DDL Group. Mpeg-7 description. Definition Language Document V2. Doc.ISO/MPEG N2997, Melbourne, October 1999.Google Scholar
  19. [19]
    MPEG Requirements Group. Mpeg-7. Requirements Document V.10. Doc. ISO/MPEG N2996, Melbourne, October 1999.Google Scholar
  20. [20]
    MPEG Requirements Group. Overview of the mpeg-7 standard. Technical Report Doc. ISO/MPEG N3158, Maui, Hawaii, December 1999.Google Scholar
  21. [21]
    Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Beatrice Yormark, editor, SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, June 18-21, 1984, pages 47–57. ACM Press, 1984.Google Scholar
  22. [22]
    H. Harman’H. Modern Factor Analysis. University of Chicago Press,. 1967.Google Scholar
  23. [23]
    Alexander Hinneburg, Charu C. Aggarwal, and Daniel A. Keim. What is the nearest neighbor in high dimensional spaces? In VLDB’2000, Proceedings of 26th International Conference on Very Large Data Bases, September 10-14, Cairo, Egypt, pages 506–515. Morgan Kaufmann, 2000.Google Scholar
  24. [24]
    Daniel A. Keim. Efficient geometry-based similarity search of 3d spatial databases. In SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data, Philadcphia, Pennsylvania, USA, pages 419–430. ACM Press, 1999.Google Scholar
  25. [25]
    Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot Siegel, and Zenon Protopapas. Fast nearest neighbor search in medical image databases. In VLDB’96, Proceedings of 22th International Conference on Very Large Data Bases, Mumbai (Bombay), India, pages 215–226. Morgan Kaufmann, 1996.Google Scholar
  26. [26]
    H.-P. Kriegel, T. Schmidt, and T. Seidl. 3d similarity search by shape approximation. In Lecture Notes in Computer Science, volume 1262, pages 1–28. Springer, 1997.CrossRefGoogle Scholar
  27. [27]
    H.-P. Kriegel and T. Seidl. Approximation-based similarity search for 3-d surface segments. Geo Informática Journal, 2(2): 113–147, 1998.Google Scholar
  28. [28]
    J. B. Kruskal and M. Wish. Multidimensional Scaling. SAGE publications, Beverly Hills, 1978.Google Scholar
  29. [29]
    Longin Latecki and Rolf Lakämper. Contour-based shape similarity. In Dionysius P. Huijsmans and Arnold W. M. Smeulders, editors, Lecture Notes in Computer Science, volume 1614, pages 617–624. Springer, 1999.Google Scholar
  30. [30]
    King-Ip Lin, H. V. Jagadish, and Christos Faloutsos. The tv-tree: An index structure for high-dimensional data. VLDB Journal, 3(4):517–542, 1994.CrossRefGoogle Scholar
  31. [31]
    Guojun Lu and Atul Sajjanhar. Region-based shape representation and similarity measure suitable for content-based image retrieval. In P. Venkat Rangan, editor, Multimedia Systems, volume 7(2), pages 165–174. ACM/Springer, 1999.Google Scholar
  32. [32]
    I. Malik, C. Carson, and S. Belongie. Region-based image retrieval. In DAGM’99, Mustererkennung, pages 152–154. Springer Verlag, 1999.Google Scholar
  33. [33]
    Rajiv Mehrotra and.lames E. Gary. Feature-based retrieval of similar shapes. In Proceedings of the Ninth International Conference on Data Engineering, April 19-23, 1993, Vienna, Austria, pages 108–115. IEEE Computer Society, 1993.Google Scholar
  34. [34]
    Apostol Natsev, Rajeev Rastogi, and Kyuseok Shim. WALRUS: A similarity retrieval algorithm for image databases. In Alex Delis, Christos Faloutsos, and Shahram Ghandeharizadeh, editors, SIGMOD 1999, pages 395–406. ACM Press, 1999.Google Scholar
  35. [35]
    S. Ravela and R. Manmahta. On computing global similarity in images. In IEEE Workshop on Applications of Computer Vision (WACV98), Princeton, pages 82–87. IEEE Computer Society, 1998.Google Scholar
  36. [36]
    Seidl T. and Kriegel H.-P. Efficient user-adaptable similarity search in large multimedia databases. In Proceedings of the 23rd International Conference on Very Large Data Bases, Athens, Greece, 1991, pages 506–515, 1997.Google Scholar
  37. [37]
    Digital Library Project University of California, Berkeley. Image retrieval by image content,
  38. [38]
    Center for Intelligent Information Retrieval University of Massachusetts. Image retrieval demo,
  39. [39]
    Dejan V. Vranic and Dietmar Saupe. 3d model retrieval. In Bianca Falcidieno, editor, Proc. Spring Conference on Computer Graphics and its Applications (SCCG2000), May 3-6, 2000, Budmerice Manor, Slovakia, pages 89-93. Comenius University, 2000.Google Scholar
  40. [40]
    N. Vujovic and D. Brazakovic. Evaluation of an algorithm for finding a match of a distorted texture pattern in a large image database. In ACM Transactions on Information Systems, volume 10(1), pages 31–60. ACM, 1998.CrossRefGoogle Scholar
  41. [41]
    R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In VLDB, volume 24, New York, USA, August 1998.Google Scholar
  42. [42]
    Roger Weber. Project chariot.
  43. [43]
    Aidong Zhang, Biao Cheng, and Raj Acharya. Texture-based image retrieval in image database systems. In Norman Revell and A. Min Tjoa, editors, DEXA’ 95-Workshop, pages 349–356, San Mateo, California, 1995. ONMIPRESS.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Martin Heczko
    • 1
  • Daniel Keim
    • 1
  • Dietmar Saupe
    • 2
  • Dejan V. Vranić
    • 2
  1. 1.Institut für InformatikUniversität HalleGermany
  2. 2.Institut für InformatikUniversität LeipzigGermany

Personalised recommendations