Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 233 Accesses

Abstract

MR imaging is superior to other imaging techniques for studying diseases of the nervous system due to its high spatial resolution and the inherent high soft tissue contrast. Conventional MR imaging based diagnosis is mostly based on cross-sectional views on analog films, resulting in subjective and descriptive or qualitative results. The digital character of MR, however, offers the opportunity to extract additional quantitative and objective information on organ shape and function for diagnosis and therapy support. Clinical requirements for extracting such information have grown considerably in neurological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bookstein F (1991) Morphometric tools for landmark data. Cambridge University Press

    Google Scholar 

  • Chan S, Chin SS, Nordli DR et al. (1998) Prospective magnetic resonance imaging identification of focal cortical dysplasia, including the non-balloon cell subtype. Ann Neurol 44:749–757

    Article  CAS  PubMed  Google Scholar 

  • Choi HS, Haynor DR, Kim Y (1991) Partial volume tissue classification of multi-channel magnetic resonance images-a mixel model. IEEE Trans Med Imaging 10:395–407

    Article  CAS  PubMed  Google Scholar 

  • Christensen G, Rabbitt RD, Miller MI (1996) Deformable templates using large deformation kinematics. IEEE Trans Image Processing 5:1435–1447

    Article  CAS  Google Scholar 

  • Chu CC, Aggarwal JK (1993) The integration of image segmentation maps using region and edge information. IEEE Trans Pattern Analysis and Machine Intelligence 15:1241–1252

    Article  Google Scholar 

  • Cocosco CA, Kollokian V, Kwan RKS et al. (1997) Brain Web: online interface to a 3D MRI simulated brain database. Neuroimage 5(4) part 2/4: S425

    Google Scholar 

  • Collins DL, Neelin P, Peters TM et al. (1994) Automatic threedimensional intersubject registration of MR volumetric data into standardized Talairach space. J Comput Assist Tomogr 18:192–205

    Article  CAS  PubMed  Google Scholar 

  • Collins DL, Le Goualher G, Venugopal R et al. (1996) Cortical Constraints for non-linear cortical registration. In: Hoehne KH, Kikinis R (eds) Visualization in biomedical computing. Lecture notes in computer science, Springer Verlag, vol 1131, pp 307–316

    Google Scholar 

  • Cootes T, Hill A, Taylor C et al. (1994) The use of active shape models for locating structures in medical images. Image and Vision Computing 12:355–366

    Article  Google Scholar 

  • Crow TJ, Ball J, Bloom SR et al. (1989) Schizophrenia as an anomaly of development of cerebral asymmetry. Arch Gen Psychiatry 46:1145–1150

    Article  CAS  PubMed  Google Scholar 

  • Davatzikos C (1996) Spatial normalisation of three-dimensional brain images using deformable models. J Comput Assist Tomogr 20:656–665

    Article  CAS  PubMed  Google Scholar 

  • Dawant BM, Thirion JP, Maes F et al. (1998) Automatic 3D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations. In: Hanson KM (nted) Proc SPIE Medical Imaging 1998: Image Processing, vol 3338, pp 1528–1539

    Google Scholar 

  • DeLisi LE, Tew W, Xie SH et al. (1995) A prospective follow-up study of brain morphology and cognition in first-epsiode schizophrenic patients: preliminary findings. Biol Psychiatry 38:349–360

    Article  CAS  PubMed  Google Scholar 

  • Eberly D, Pizer SM (1994) Ridge flow models for image segmentation. In: Proc SPIE Medical Imaging 1994: Image Processing, vol 2167, pp 54–64

    Google Scholar 

  • Evans AC, Frank JA, Antel J et al. (1997) The role of MRI in clinical trials of multiple sclerosis: comparison of image processing techniques. Ann Neurol 41:125–132

    Article  CAS  PubMed  Google Scholar 

  • Free SL, Woermann FG, Duncan JS (1998) Voxel-by-voxel comparison of automatically segmented grey matter: a rater-independent comparison of structural MRI in patients with epilepsy. Epilepsia 39 (Suppl.6): 98 (Abstract)

    Google Scholar 

  • Gerig G, Welti D, Guttman C et al. (1998) Exploring the discrimation power of the time domain for segmentation and characterization oflesions in serial MR data. In: Wells WM, Colchester A, Delp S (eds) Proc. of the 1st international conference on medical image computing and computer-assisted intervention, MICCAI’ 98. Lecture notes in computer science, Springer Verlag, vol 1496, pp 469–480

    Google Scholar 

  • Griffin LD, Colchester ACF, Robinson GP (1992) Scale and segmentation of grey-level images using maximum gradient paths. Image and Vision Computing 10:389–402

    Article  Google Scholar 

  • Griffin LD, Colchester ACF, Roll SA, Studholme CS (1994) Hierarchical segmentation satifying constraints. In: Proc British Machine Vision Conference, BMVC’ 94, pp 135–144

    Google Scholar 

  • Guttman CRG, Ahn SS, Hsu LE et al. (1994). The evolution of multiple sclerosis Lesions on Serial MRI. Am J Neuroradiol 16:1481–1491

    Google Scholar 

  • Haddon JF, Boyce JF (1990) Image segmentation by unifying region and boundary information. IEEE Trans on Pattern Analysis and Machine Intelligence 12:929–948

    Article  Google Scholar 

  • Johnston B, Atkins MS, Mackiewich B et al. (1996) Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Trans Med Imaging 15:154–169

    Article  CAS  PubMed  Google Scholar 

  • Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1:321–331

    Article  Google Scholar 

  • Kim B, Boes JL, Frey KA et al. (1997) Mutual information for automated unwarping of rat brain auto radiographs. Neuroimage 5:31–40

    Article  CAS  PubMed  Google Scholar 

  • Laidlaw DH, Fleischer KW, Barr AH (1998) Partial-volume bayesian classification of Material mixtures in MR volume data using voxel histograms. IEEE Trans Med Imaging 17:74–86

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Collins RT, Rothfus WE (1998) Automatic bilateral symmetry (midsagittal) plane extraction from pathological 3D neuroradiological images. In: Hanson K.M. (nted) Proceedings SPIE Medical Imaging 1998: Image Processing, vol 3338, pp 1528–1539

    Google Scholar 

  • Maes F, Collignon A, Vandermeulen D et al. (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198

    Article  CAS  PubMed  Google Scholar 

  • Maes F, Vandermeulen D, Suetens P, Marchal G (1995) Computer-aided interactive object delineation using an intelligent paintbrush technique. Proceedings 1st International conference on computer vision, virtual reality and robotics in medicine, CVRMED’ 95, Lectures notes in computer science, Springer, vol. 905, pp 77–83

    Google Scholar 

  • Maes F, Van Leemput K, DeLisi LE et al. (1999) Quantification of cerebral grey and white matter asymmetry from MRI. In: Proceedings of medical image computing and computer-assisted intervention-MICCAI’ 99. In press.

    Google Scholar 

  • Maintz JBA, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2:1–36

    Article  CAS  PubMed  Google Scholar 

  • Marais P, Guillemaud R, Sakuma M et al. (1996) Visualising cerebral asymmetry. In: Hoehne K.H., Kikinis R. (eds) Proceedings visualization in biomedical computing. Lecture notes in computer science, Springer Verlag, vol 1131, pp 411–416

    Google Scholar 

  • McInerney T, Terzopulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1:91–108

    Article  CAS  PubMed  Google Scholar 

  • Meyer C, Boes J, Kim B et al. (1997) Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin plate spline warped geometric deformations. Med Image Anal 1:195–206

    Article  CAS  PubMed  Google Scholar 

  • Ogniewicz R, Vehkomäki T, Székely G (1993) Extraction of closed boundaries from fragmented edge maps using shape-oriented grouping procedures. In: Lemke HU, Inamura K, Jaffe CC, Felix R (eds) Proceedings Computer assisted radiology, Springer Verlag, pp 334–340

    Google Scholar 

  • Pavlidis T, Liow YT (1990) Integrating region growing and edge detection. IEEE Trans on Pattern Analysis and Machine Intelligence 12:225–233

    Article  Google Scholar 

  • Pietrzyk U, Herholz K, Fink G. et al. (1994) An interactive technique for three-dimensional image registration: validation for PET, SPECT, MRI and CT brain studies. J Nucl Med 35:2011–2018

    CAS  PubMed  Google Scholar 

  • Pizer SM, ter Haar Romeny BM (1991) Fundamental properties of medical image perception. J Dig Imaging 4:1–20

    Article  CAS  Google Scholar 

  • Prima S, Thirion JP, Subsol G et al. (1998) Automatic analysis of normal brain dissymmetry of males and females in MR images. In: Wells WM, Colchester A, Delp S (eds) Proceedings of the 1st International conference on medical image computing and computer-assisted intervention-MICCAI’ 98. Lecture notes in computer science, Springer Verlag, vol 1496, pp 770–779

    Google Scholar 

  • Rey D, Subsol G, Delingette H et al. (1999) Automatic detection and segmentation of evolving processes in 3D medical images: application to multiple sclerosis. In: Kuba A, Samal M, Todd-Pokropek (eds) Proceedings Information processing in medical imaging. Lecture notes in computer science, Springer Verlag, vol 1613, pp 154–167

    Google Scholar 

  • Santago P, Gage HD (1995) Statistical models of partial volume effect. IEEE Trans Image Proc 4:1531–1540

    Article  CAS  Google Scholar 

  • Semelka RC, Tomei E, Wagner S et al. (1990) Normal left ventricular dimensions and function: Interstudy reproducibility of measurements with cine MR imaging. Radiology 174:763–768

    CAS  PubMed  Google Scholar 

  • Simmons A, Tofts PS, Barker GJ et al. (1994) Sources of intensity nonuniformity in spin echo images at 1.5 T. Magn Reson Med 32:121–128

    Article  CAS  PubMed  Google Scholar 

  • Sisodiya SM, Free SL, Stevens JM et al. (1995) Widespread cerebral structural changes in patients with cortical dysgenesis and epilepsy. Brain 118:1039–1050

    Article  PubMed  Google Scholar 

  • Sisodiya SM, Moran N, Free SL et al. (1997) Correlation of widespread preoperative magnetic resonance imaging changes with unsuccessful surgery for hippocampal sclerosis. Ann Neurol 41:490–496

    Article  CAS  PubMed  Google Scholar 

  • Studholme C, Hill DLG, Hawkes DJ (1996) Automated 3-D registration of MR and CT images of the head. Med Image Anal 1:163–175

    Article  CAS  PubMed  Google Scholar 

  • Subsol G (1999) Crest-lines for curvature-based warping, In: Toga AW (nted) Brain warping. Academic Press, pp 241–262

    Google Scholar 

  • Terzopoulos D, Platt J, Barr A et al. (1987) Elastically deformable models. Computer Graphics 21:205–214

    Article  Google Scholar 

  • Thirion JP (1998) Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal 2: 243–260

    Article  CAS  PubMed  Google Scholar 

  • Thirion JP, Calmon G (1999) Deformation analysis to detect and quantify active lesions in 3D medical image sequences. IEEE Trans Med Imaging 18:429–441

    Article  CAS  PubMed  Google Scholar 

  • Thompson PM, Toga AW (1996) High-resolution randommesh algorithms for creating a probabilistic three-dimensional surface atlas of the human brain. Neuroimage 3:19–34

    Article  CAS  PubMed  Google Scholar 

  • Toga AW (1999) Brain warping. Academic Press

    Google Scholar 

  • Udupa JK, Wei L, Samarasekera S et al. (1997) Multiple sclerosis lesion quantification using fuzzy-connectedness principles. IEEE Trans Med Imaging 16:598–609

    Article  CAS  PubMed  Google Scholar 

  • Van Leemput K, Maes F, Vandermeulen D et al. (1999a). Automated model-based bias field correction of MR images of the brain. IEEE Trans Med Imaging. Accepted for publication.

    Google Scholar 

  • Van Leemput K, Maes F, Vandermeulen D et al. (1999b). Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging. Accepted for publication.

    Google Scholar 

  • Van Leemput K, Maes F, Bello F et al. (1999c) Automated segmentation of MS lesions from multi-channel MR images. In: Proceedings of medical image computing and computer-assisted intervention-MICCAI’ 99. In press.

    Google Scholar 

  • Vincken KL, Koster ASE, Viergever MA (1997) Probabilistic multi scale image segmentation. IEEE Trans Pattern Analysis and Machine Intelligence 19:109–120

    Article  Google Scholar 

  • Wells WM, Grimson WEL, Kikinis R et al. (1996a) Adaptive segmentation of MRI data. IEEE Trans Med Imaging 15:429–442

    Article  CAS  PubMed  Google Scholar 

  • Wells WM, Viola P, Atsumi H et al. (1996b) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1:35–51

    Article  PubMed  Google Scholar 

  • West J, Fitzpatrick JM, Wang MY et al. (1997) Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr 21:554–566

    Article  CAS  PubMed  Google Scholar 

  • Woods RP, Grafton ST, Watson JDG et al. (1998) Automated image registration II: Intersubject validation of linear and non-linear models. J Comput Assist Tomogr 22:155–165

    Google Scholar 

  • Woods RP, Mazziotta JC, Cherry SR (1993) MRI-PET registration with automated algorithm. J Comput Assist Tomogr 17:536–546

    Article  CAS  PubMed  Google Scholar 

  • Zijdenbos AP, Dawant BM, Margolin RA et al. (1994) Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging 13:716–724

    Article  CAS  PubMed  Google Scholar 

  • Zijdenbos A, Forghani R, Evans A (1998) Automatic quantification of MS lesions in 3D MRI brain data sets: Validation of INSECT. In: Wells W.M., Colchester A., Delp S. (eds) Proceedings of the 1 st International conference on medical image computing and computer-assisted intervention-MICCAI’ 98. Lecture notes in computer science, Springer Verlag, vol 1496, pp 439–448

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vandermeulen, D., Maes, F., Van Leemput, K. (2001). Quantitative MR Imaging. In: Demaerel, P. (eds) Recent Advances in Diagnostic Neuroradiology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56662-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56662-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63003-3

  • Online ISBN: 978-3-642-56662-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics