Skip to main content

Role of Intracranial CT and MR Angiography

  • Chapter
Recent Advances in Diagnostic Neuroradiology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 232 Accesses

Abstract

The holy grail for CTA and MRA of the intracranial vasculature is to replace catheter angiography as the primary imaging modality for the investigation of the cerebral vascular diseases, in particular in the search for berry aneurysms. In order to achieve this, the computed techniques must have sensitivity and specificity at least equal to digital subtraction angiography (DSA) (i.e. they must replace invasive techniques as the gold standard by which other techniques are measured), and must also allow adequate surgical or neuro-interventional planning. For example, the neck of the aneurysm must be definitively displayed, and the presence of neighbouring small vessels depicted. Since both neurosurgeons and in- terventional neuroradiologists will approach an anterior communicating artery aneurysm from the side of its maximum inflow, the imaging technique must be able to demonstrate flow dynamics around a lesion with the same temporal resolution as DSA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson CM, Saloner D, Tsuruda JS, Shapeero LG, Lee RE (1990) Artifacts in Maximum Intensity Projection display of MR angiographs. Am J Roentgenol 154:623–629

    Article  CAS  Google Scholar 

  • Anderson C, Lee RE (1993) Time of Flight angiography in clinical magnetic resonance angiography. In: Anderson CM, Edelman RR, Turski PA (eds). Raven Press, New York

    Google Scholar 

  • Anderson CM, Turski PA, Edelman RR (1993) Flow quantification. In: Anderson CM, Edelman RR, Turski PA (eds) Clinical magnetic resonance angiography. Raven Press, New York

    Google Scholar 

  • Anderson CM, Lee RE (1993) Time of Flight angiography in clinical magnetic resonance angiography. In: Anderson CM, Edelman RR, Turski PA (eds). Raven Press, New York

    Google Scholar 

  • Anzalone N, Tirulzi F, Scotti G (1995) Acute subarachnoid haemorrhage 3D MR angiography verses DSA. Neuroradiology 37:257–261

    Article  CAS  PubMed  Google Scholar 

  • Anzalone N, Scomazzoni F, Starda L, Patay Z, Scotti G (1998) Intracranial vascular malformations. Eur Radiol 8:685–690

    Article  CAS  PubMed  Google Scholar 

  • Aoki S, Osawa S, Yoshioka N, Yamashita H, Kumagai H, Araki T (1998) Velocity coded colour MR angiography. Am J Neuroradiol 19:691–693

    CAS  PubMed  Google Scholar 

  • Cellerini M, Mascalchi M, Mangiafico S et al. (1999) Phase contrast MR angiography of intracranial dural arteriovenous fistulae. Neuroradiology 41:487–492

    Article  CAS  PubMed  Google Scholar 

  • Chung TS, Joo JY, Lee SK, Chien D, Laub G (1999) Evaluation of cerebral aneurysms with high resolution MR angiography using a section interpolation technique: correlation with digital subtraction angiography. Am J Neuroradiol 20:229–235

    CAS  PubMed  Google Scholar 

  • Cline H, Lorensen W, Souza S (1991) 3D surface rendered MR images of the brain and its vasculature. J Comput Assist Tomogr 15:103–107

    Article  Google Scholar 

  • Davis WL, Blatter DD, Harnsberger HR, Parker DL (1994) Intracranial MR angiography: comparison of single volume 3D time of flight and multiple overlapping thin slab acquisition techniques. Am J Roentgenol 163:915–920

    Article  CAS  Google Scholar 

  • De Jesus O, Rifkinson N (1997) Magnetic resonance angiography of giant aneurysms. Pitfalls and surgical implications. PR Health Science Journal 16:131–135

    Google Scholar 

  • El Gammal T, Brooks B (1991) Conventional MR neuro-angiography. Am J Roentgnol 156:1075–1080

    Google Scholar 

  • Fogelholm R (1981) Subarachnoid haemorrhage in middle Finland; incidents, early prognosis and indications for neurosurgical treatment. Stroke 12:296–301

    Article  CAS  PubMed  Google Scholar 

  • Gonner F, Heid O, Nicholi G, Baumgartner W, Schroth T (1998) MR angiography with ultra short echo time in cerebral aneurysms treated with Guglielmi detachable coils. Am J Neuroradiol 19:1324–1328

    CAS  PubMed  Google Scholar 

  • Grandin CB, Mathurin P, Duprez T et al. (1998) Diagnosis of intracranial aneurysms: accuracy of MR angiography and 0.5 T. Am J Neuroradiol 19:245–252

    CAS  PubMed  Google Scholar 

  • Halpin SFS, Hourihan MD, Chawda S, Bourne MW (1998) The affect of scan data filtering on image quality. Presented at the American Society of Neuroradiology, Seattle

    Google Scholar 

  • Harrison M, Johnson B, Gardner G, Welling B (1997) Preliminary results on the management of unruptured intracranial aneurysms with MRA and CTA. Neurosurgery 40:947–95

    Article  CAS  PubMed  Google Scholar 

  • Hashi K (1997) Present status of brain. Doc Neurol Med 47:549–554

    Google Scholar 

  • Juveal S, Porras M, Heiskanen O (1993) Natural history of unruptured intracranial aneurysm: a long term follow up study. J Neurosurg 79:174–182

    Article  Google Scholar 

  • Heiserman JE, Dean BL, Hodak JA (1994) Neurologic complications of cerebral angiography. Am J Neuroradiol 15:1401–1407

    CAS  PubMed  Google Scholar 

  • Hope JKA, Wilson JL, Thomson FJ (1996) 3D CT angiography in the detection and characterisation of intracranial berry aneurysms. Am J Neuroradiol 17:439–445

    CAS  PubMed  Google Scholar 

  • Huston J III, Rufenacht DA, Ehman RL, Wiebers DO (1991) Intracranial aneurysms and vascular malformations: comparison of time of flight and phase contrast MR angiography. Radiology 181:721–730

    PubMed  Google Scholar 

  • Huston J III, Nichols DA, Luetmer PH et al. (1994) Blinded prospective evaluation of sensitivity of MR angiography to known intracranial aneurysms: importance of aneurysm size. Am J Neuroradiol 15:1607–1614

    PubMed  Google Scholar 

  • Huston J III, Nichols DA, Luetmer PH et al. (1994) Blinded prospective evaluation of sensitivity of MR angiography to known intracranial aneurysms: importance of aneurysm size. Am J Neuroradiol 15:1607–1614

    PubMed  Google Scholar 

  • Imakita S, Onishi Y, Hashimoto T, Motosugi S (1998) Subtraction CT angiography with controlled orbit helical scanning for detection of intracranial aneurysms. Am J Neuroradiol 19:291–295

    CAS  PubMed  Google Scholar 

  • Ikawa F, Sumida M, Uozumi T et al. (1994) Comparison of 3D phase contrast magnetic resonance angiography with 3D time of flight magnetic resonance angiography in cerebral aneurysms. Surg Neurol 42:287–292

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Hatanaka N, Kinoshita M, Kuwajima A (1998) Cerebral venous angioma detected by slow velocity coding phase contrast MRA. No To Shinkei 50:459–462

    CAS  PubMed  Google Scholar 

  • Inagawa T (1994) Ultra early rebleeding within 6 hours after aneurysmal rupture. Surg Neurol 42:130–134

    Article  CAS  PubMed  Google Scholar 

  • Kassell NF, Torner JC (1984) The international co-operative study of timing of aneurysm surgery-an update. Stroke 15:566–570

    Article  CAS  PubMed  Google Scholar 

  • Kim A, Proske M, Tirsch E, Von Waymann A, Radu EW, Steinbrich W (1996) Value of repeat angiography in cases of unexplained subarachnoid haemorrhage. Acta Neurol Scand 93:366–373

    Article  Google Scholar 

  • Khanna RK, Malik GM, Qureshi N (1996) Predicting outcome following surgical treatment of unruptured intracranial aneurysms; a proposed grading system. J Neurosurg 84:49–54

    Article  CAS  PubMed  Google Scholar 

  • Laub GA, Kiser WA (1998) MR angiography with gradient motion refocussing. J Comput Assist Tomogr 12:377–382

    Article  Google Scholar 

  • Lenhart M, Bretchneider T, Gmeinwieser J, Ellrich O, Feuerbach S (1997) Cerebral CT angiography in the diagnosis of acute subarachnoid haemorrhage. Acta Radiol 38:791–796

    CAS  PubMed  Google Scholar 

  • Linuma T, Tatelo Y, Furuse M (1998) Re-estimation of cost performance for mass screening for unruptured intracranial aneurysms using MR angiography. Japan J Magnresonmed 18:243–246

    Google Scholar 

  • Nakajima Y, Yoshimine T, Yoshida H, Sakasishita K, Okamoto M (1998) Computerised tomography angiography of ruptured cerebral aneurysms: factors affecting time to maximum contrast concentration. J Neurosurg 88:663–669

    Article  CAS  PubMed  Google Scholar 

  • Nussel F, Wegmuller H, Huber P (1991) Comparison of magnetic resonance angiography and conventional angiography cerebral arteriovenous malformations. Neuroradiology 33:56–61

    Article  CAS  PubMed  Google Scholar 

  • Ng SH, Wong H, Ko S et al. (1997) CT angiography of intracranial aneurysms: advantages and pitfalls. Eur J Radiol 25:141–149

    Article  Google Scholar 

  • Ogawa T, Okudera T, Nogukhi K, Sasaki N, Yasui N (1996) Cerebral aneurysms evaluation with three dimensional CT angiography. Am J Neuroradiol 17:447–454

    CAS  PubMed  Google Scholar 

  • O’Leary DH, Mattle H, Potter JE (1989) Atheromatous pseudo-occlusion of the internal carotid artery. Stroke 20:1168–1173

    Article  PubMed  Google Scholar 

  • Pant B, Sumida M, Kurisu K, Arita K, Kutsuma M, Uozumi T (1997) Usefulness of 2D time of flight MRA combined with surface anatomy scanning for convexities lesions. Neurosurg Rev 20:108–113

    Article  CAS  PubMed  Google Scholar 

  • Parker DL, Tsuruda JS, Goodridge KC, Alexander AL, Boswell HR (1998) Contrast enhanced magnetic resonance angiography of cerebral arteries. A review. Invest Radiol 33:560–572

    Article  CAS  PubMed  Google Scholar 

  • Perdy D, Cadena G, Laub F (1992) The design of variable tip angle slab selection (TONE) pulses for improved 3D MR angiography. In: Proceedings 11th Annual Meeting of the Society of Magnetic Resonance in Medicine. Berlin: The Society of Magnetic Resonance in Medicine, p 882

    Google Scholar 

  • Phillips J, Roberts G, Bolger C et al. (1997) A potential biological marker for unruptured intracranial aneurysms. Neurosurgery 40:112–115

    Article  Google Scholar 

  • Preta L, Gaetani P, Dore R, Fulle I, Infuso L, Campani R (1998) Spiral CTA and surgical correlations in the evaluation of intracranial aneurysms. Eur Radiol 8:739–745

    Article  Google Scholar 

  • Puskas Z, Schuierer G (1996) Determination of blood circulation time for optimising contrast medium opacification in CT angiography. Radiologe 36:750–757

    Article  CAS  PubMed  Google Scholar 

  • Raaymakers TW, Rankel GK, Ramos LM (1998) Initial and follow up screening for aneurysms in families with aneurysmal subarachnoid haemorrhage. Neurology 51:1125–1130

    Article  CAS  PubMed  Google Scholar 

  • Rohnert W, Hanig V, Hietschold V, Abolmaali N (1998) Detection of aneurysms in subarachnoid haemorrhage CTA verses DSA. Aktuel Radiol 8:63–70

    CAS  Google Scholar 

  • Saitoh H, Hayakawa K, Nishimura K (1995) Re-rupture of cerebral aneurysms during angiography. Am J Neuroradiol 16:539–542

    CAS  PubMed  Google Scholar 

  • Sarti C, Tuomilehto J, Salomaa V (1991) Epidemiology of subarachnoid haemorrhage in Finland from 1983-1985. Stroke 22:848–853

    Article  CAS  PubMed  Google Scholar 

  • Sardashti M, Schwartzberg DG, Stomp GP, Dickson WT (1990) Spin labelling angiography of the carotid by presaturation and simplified adiabatic inversion. Magn Reson Med 15:192–200

    Article  CAS  PubMed  Google Scholar 

  • Turski PA, Korosec FA (1993) Phase contrast angiography in clinical magnetic resonance angiography. In: Anderson CM, Edelman RR, Turski PA (eds). Raven Press

    Google Scholar 

  • Schwartz RB, Tice HM, Hootem SM, Hsu RTL, Stieg PE (1994) Evaluation of cerebral aneurysms with helical CT correlation with conventional angiography and MR angiography. Radiology 192:717–722

    CAS  PubMed  Google Scholar 

  • Schuierer G, Huck WJ, Laub G (1992) Magnetic resonance angiography of intracranial aneurysms comparison with intra-arterial DSA. Neuroradiology 35:50–54

    Article  CAS  PubMed  Google Scholar 

  • Sekhar LN, Heros RC (1981) Origin growth and rupture of sacular aneurysms: a review. Neurosurgery 8:248–260

    Article  CAS  PubMed  Google Scholar 

  • Stock KW, Radue AW, Jacob AL., Bao XS, Steinbrich W (1995) Intracranial arteries: prospective blinded comparative study of MRA and DSA. Radiology 195:451–456

    CAS  PubMed  Google Scholar 

  • Takagi R, Hayashi H, Isayama K, Ikeda Y, Teramoto A (1998) 3D CTA of intracranial vasospasm following SAH. Neuroradiology 40:631–635

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Numaguchi Y, Konno S, Shrir D, Patel U (1997) Initial experience with helical CT and 3D reconstruction in therapeutic planning of cerebral AVMS: comparison with 3D TOF MRA and DSA. J Comput Assist Tomogr 21:811–817

    Article  CAS  PubMed  Google Scholar 

  • Tanatani S, Sasaki O, Takeuchi S, Fujii Y, Tanaka R (1997) Detection of delayed cerebral vasospasm after rupture of intracranial aneurysms by MRA. Neurosurgery 40:748–753

    Article  Google Scholar 

  • Tetsumlmura A, Yoshino M, Yamada I, Sasaki T (1999) Head and neck haemangiomas: contrast enhanced 3D MRA. Neuroradiology 41:140–143

    Article  Google Scholar 

  • Turski P (1993) Magnetic resonance angiography of vascular malformations in clinical magnetic resonance angiography. In: Anderson CM, Edelman RR, Turski PA (eds). Raven Press, New York

    Google Scholar 

  • Turtz A, Allen D, Koenigsberg R, Goldman H (1995) Non visualisation of a large cerebral aneurysm despite high resolution MRA. J Neurosurg 82:294–295

    Article  CAS  PubMed  Google Scholar 

  • Vanninen RL, Hemesniemi JA, Puranen M, Ronkinen A (1996) Magnetic resonance angiographic screening for asymptomatic intracranial aneurysms: the problem of false negatives: technical case report. Neurosurgery 38:836–841

    Article  Google Scholar 

  • Velthuis BK, Rankel G, Ramos L, Vandertop W, Van Leeuwen M (1998) Subarachnoid haemorrhage: aneurysm detection and pre-operative evaluation with CTA. Radiology 208:423–430

    CAS  PubMed  Google Scholar 

  • Vieco P, Lauren E, Gross C (1996) CT angiography in the examination of patients with aneurysm clips. Am J Neuroradiol 17:455–457

    CAS  PubMed  Google Scholar 

  • Wiebers DO (1998) Unruptured intracranial aneurysms-risk of rupture and risks of surgical intervention. New Engl J Med 339:1725–1733

    Article  Google Scholar 

  • Wiebers DO, Tomer JC, Meissner I (1992) Impact of unruptured intracranial aneurysms on public health in the United States. Stroke 23:1416–1419

    Article  CAS  PubMed  Google Scholar 

  • Zouaoui A, Sahel M, Marro B, Clemenceau S, Dargent N, Marsault C (1997) 3D computed telegraphic angiography in detection of cerebral aneurysms in acute subarachnoid haemorrhage. Neurosurgery 41:125–130

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Halpin, S., Ryan, M. (2001). Role of Intracranial CT and MR Angiography. In: Demaerel, P. (eds) Recent Advances in Diagnostic Neuroradiology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56662-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56662-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63003-3

  • Online ISBN: 978-3-642-56662-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics