What Are MACHOs? Interpreting LMC Microlensing

  • David S. Graff
Conference paper

Abstract

I discuss two hypotheses that might explain LMC microlensing: the Halo stellar remnant lensing hypothesis and the unvirialized LMC lensing hypothesis. I show that white dwarfs cannot contribute substantially to the cosmic baryon budget; they are strongly constrained by chemical evolution and background light measurements. Although there have been some claims of direct optical detections of white dwarfs in the Halo, I show how the full sample of direct optical searches for halo lenses do not support the Halo lens hypothesis.

N-body simulations suggest that the LMC may be naturally excited out of virial equilibrium by tidal forcing from the Milky Way. New measurements of LMC kinematics not only do not rule out the unvirialized LMC lensing hypothesis, but even moderately favor it (at 95% confidence).

I discuss future microlensing observations that will resolve this issue: high quality detailed measurements of microlensing events, exotic microlensing events, comparing different lines of sight, and statistics of the HR diagram. These techniques have all been applied, but are not yet successful owing to the relatively low quality and quantity of Magellanic cloud microlensing events discovered by ground based search teams. A space based search program involving the SNAP satellite will generate enough events and high quality events to break the degeneracy

Keywords

Burning Helium Progen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afonso, C. et al.: ApJ 532, 340 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Albrow et al.: ApJL submitted, astro-ph/0008078Google Scholar
  3. 3.
    Alcock et al.: ApJ submitted, astro-ph/0008282Google Scholar
  4. 4.
    Alcock et al.: ApJ 491, 436 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Alcock et al: ApJ 541, 734 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Alcock et al: ApJ 542, 248 (2000)ADSGoogle Scholar
  7. 7.
    Chabrier, G.: ApJ 513, 103 (2000)CrossRefGoogle Scholar
  8. 8.
    Evans, N. W., & Kerins, E. J.: ApJ 529, 91 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Fields, B. D., Freese, K., & Graff, D. S.: New Astron. 3, 347 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Fields, B. D., Freese, K., & Graff, D. S.: ApJ 534, 265 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Flynn, C., Gould, A. & Bahcall, J. N.: ApJ 466, 55 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Flynn, C., Sommer-Larsen, J., Fuchs, B., Graff, D. S., & Salim, S.: MNRAS, in press, astro-ph/9912264 (2000)Google Scholar
  13. 13.
    Gates, E. & Gyuk, G.: ApJ in press, astro-ph/0004399Google Scholar
  14. 14.
    Gibson, B. K. & Mould, J. R.: ApJ 482, 98 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    Gould, A. P.: ApJ 396, 104 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    Gould, A. P.: ApJ 441, 77 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Gould, A. P.: ApJ 506, 253 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Gould, A. P.: ApJ 525, 734 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    Gould, A. P. & Loeb, A.: ApJ 396, 104 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    Graff, D. S. & Freese, K.: ApJ 456, 49 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Graff, D. S., Freese, K., Walker, T. P. & Pinsonneault, M. H.: ApJ 523, 77 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    Graff, D. S., Gould, A. P., Suntzeff, N., Schommer, R. A. & Hardy, E.: ApJ 540, 211 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Graff, D. S. & Kim, A.: ApJ submitted Google Scholar
  24. 24.
    Gyuk, G., Dalai, N., & Greist, K.: ApJ 535, 90 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Han, C & Gould, A.: ApJ 480, 196 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    Hansen, B. M. S.: ApJ 520, 680 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    Honma, M.: ApJ 517, 39 (1999)CrossRefGoogle Scholar
  28. 28.
    Ibata, R., Richer, H. B., Gilliland, R. L., & Scott, D.: ApJ 524, 95 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    Ibata, R., Irwin, M., Bienaymé, O., Scholtz, R., & Guibert, J.: ApJ 532, 41 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    Lasserre, T. et al.: A & A 355, 39 (2000)ADSGoogle Scholar
  31. 31.
    Luyten, W. J.: LHS Catalogue: a catalogue of stars with proper motions exceeding 0.5” annually (Minneapolis: University of Minnesota, Minneapolis 1999)Google Scholar
  32. 32.
    Mohapatra, R.N. & Teplitz, V.L.: Phys. Lett. B462, 302 (1999)ADSGoogle Scholar
  33. 33.
    Sahu, K.: Nature 370, 275 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    Sackett, P.:’Microlensing and the Physics of Stellar Atmospheres’. In Microlensing 2000: A New Era of Microlensing Astrophysics ed. by J.W. Menzies and P.D. Sackett (Astronomical Society of the Pacific, 2000)Google Scholar
  35. 35.
    Saumon, D. & Jacobson, S.B.: ApJ 511, 107 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    Schneider, P. & Weiss, A.: A&A textbf164, 237 (1986)Google Scholar
  37. 37.
    Stubbs, C.W.:’The Case for a Next Generation LMC Microlensing Survey’. In The Third Stromlo Symposium: The Galactic Halo ed. by T.S.Axelrod & M.E.Putnam (American Society of the Pacific 1999) vol. 165, p. 503Google Scholar
  38. 38.
    Weinberg, M.: ApJ 532, 922 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    Wu, X.-P: ApJ 435, 66 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    Zaritsky, D., Schectman, S. A., Thompson, I., Harris, J. & Lin, D. N. C.: AJ 117, 2268 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    Zhao, H. S.: MNRAS 294, 139 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    Zhao, H. S. Graff, D. S. & Guhathakurta, P.: ApJ 532, 37 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • David S. Graff
    • 1
  1. 1.Astronomy Dept.University of MichiganAnn ArborUSA

Personalised recommendations