Skip to main content

Primordial Black Holes as Dark Matter

  • Conference paper
Dark Matter in Astro- and Particle Physics

Abstract

Primordial black holes (PBHs) may readily form during the radiation dominated stages of the universe from the gravitational collapse of horizon-size energy density fluctuations of moderate amplitude. PBH formation is particularly efficient during a cosmic QCD transition, due to a generic decrease in pressure forces. This allows for a primordial black hole mass function which is peaked close to the QCD horizon scale, M h ~ 2M (Tc/100MeV)–2, where T c is the cosmic QCD phase transition temperature. Such formed PBHs are a viable cold dark matter candidate and may offer an explanation for the results of microlensing surveys, as performed by the MACHO and EROS collaborations, that a fraction of the galactic halo dark matter may be in form of compact massive objects. It may well be that MACHO and EROS have only detected the low-mass tail of a PBH population comprising the dark matter with a mass function extending beyond M bh > 2M . Observational signatures and constraints of cosmic solar mass PBH dark matter are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ya. B. Zel’dovich, I.D. Novikov: Sov. Astron. 10 602 (1967)

    ADS  Google Scholar 

  2. S. W. Hawking: MN-RAS 152 75 (1971)

    ADS  Google Scholar 

  3. B. J. Carr: ApJ 201 1 (1975)

    Article  ADS  Google Scholar 

  4. J.C. Niemeyer, K. Jedamzik: Phys. Rev. D 59 124013 (1999)

    Article  ADS  Google Scholar 

  5. Y. Iwasaki et al.: Zeit. f. Phys. 71 343 (1996)

    Google Scholar 

  6. K. Jedamzik: Phys. Rev. D 55 R5871 (1997)

    Article  ADS  Google Scholar 

  7. C. Schmid, D. J. Schwarz, P. Widerin: PRL 78 791 (1997)

    Article  ADS  Google Scholar 

  8. G. F. Chapline: Phys. Rev. D 12 2949 (1975)

    Article  ADS  Google Scholar 

  9. M. Crawford, D. N. Schramm: Nature 298 538 (1982)

    Article  ADS  Google Scholar 

  10. K. Jedamzik, J.C. Niemeyer: Phys. Rev. D 59 124014 (1999)

    Article  ADS  Google Scholar 

  11. G. M. Fuller, G. J. Mathews, C. R. Alcock: Phys. Rev. D 37 1380 (1988)

    Article  ADS  Google Scholar 

  12. C. DeTar: Nucl. Phys. B 42 73 (1995)

    Article  Google Scholar 

  13. T. Blum et al.: Phys. Rev. D 51 5153 (1995)

    Article  ADS  Google Scholar 

  14. C. Bernard et al.: Nucl. Phys. B 47 503 (1996)

    Article  MathSciNet  Google Scholar 

  15. J.C. Niemeyer, K. Jedamzik: Phys. Rev. Lett. 80 5481 (1998)

    Article  ADS  Google Scholar 

  16. C.Y. Cardall, G.M. Fuller: astro-ph/9801103

    Google Scholar 

  17. A. Balbi et al.: astro-ph/0005124 A.H. Jaffe et al.: astro-ph/0007333

    Google Scholar 

  18. B.J. Carr, MNRAS 189 123 (1979)

    ADS  Google Scholar 

  19. M.C. Miller: astro-ph/0003176

    Google Scholar 

  20. P.J.E. Peebles, S. Seager, W. Hu: Astrophys. J. 539 L1 (2000)

    Article  ADS  Google Scholar 

  21. A.M. Green, A.R. Liddle: Phys. Rev. D 56 6166 (1997)

    Article  ADS  Google Scholar 

  22. C.F. Alcock et. al.: astro-ph/0001272

    Google Scholar 

  23. T. Lasserre et al.: Astron. Astrophys. 355 L39 (2000)

    ADS  Google Scholar 

  24. J.J. Dalcanton, C.R. Canizares, A. Granados, C.C. Steidel, J.T. Stocke: ApJ 424 550 (1994)

    Article  ADS  Google Scholar 

  25. M.R.S. Hawkins: MNRAS 278 787 (1996)

    Article  ADS  Google Scholar 

  26. J. Wambsganss, R.W. Schmidt, W.N. Colley, T. Kundic, E.L. Turner: astro-ph/0010232

    Google Scholar 

  27. T. Nakamura, M. Sasaki, T. Tanaka, K.S. Thorne: ApJL 487 L139 (1997)

    Article  ADS  Google Scholar 

  28. K. Ioka, T. Tanaka, T. Nakamura: Phys. Rev. D 60 083512 (1999)

    Google Scholar 

  29. A.F. Heckler, E.W. Kolb: ApJL 472 85 (1996)

    Article  Google Scholar 

  30. K. Freese, B.D. Fields, D.S. Graff: astro-ph/0007444

    Google Scholar 

  31. D.S. Graff: astro-ph/0005521 E. Kerins: astro-ph/0007137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jedamzik, K. (2001). Primordial Black Holes as Dark Matter. In: Klapdor-Kleingrothaus, H.V. (eds) Dark Matter in Astro- and Particle Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56643-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56643-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62608-1

  • Online ISBN: 978-3-642-56643-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics