Dark Matter in Supergravity

  • R. Arnowitt
  • B. Dutta
  • Y. Santoso
Conference paper


We consider neutralino-proton cross sections for halo dark matter neutralinos \( \left( {\tilde{\chi }_{1}^{0}} \right) \) within the framework of supergravity models with R-parity invariance for models with universal soft breaking (mSUGRA) and models with nonuniversal soft breaking. The analysis includes the necessary corrections to treat the large tanβ region (i.e. L-R mixing in the squark and slepton mass matrices, loop corrections to the b and τ masses,etc) and includes all coannihilation phenomena. For mSUGRA, dark matter detectors with current sensitivity are seen to be probing the region where tanβ ≳25, \( {{\Omega }_{{\tilde{\chi }_{1}^{0}}}}{{h}^{2}} < 0.1,{{m}_{{\tilde{\chi }_{1}^{0}}}} \lesssim 90GeV \), and for the light Higgs, m h ≲ 120 GeV. Nonuniversal models can have a much larger cross section, and current detectors can probe part of the parameter space where tanß ≳ 4. Minimum cross sections are generally greater than 10–9 pb to 10–10 pb for m 1/2 = 600 GeV, (and hence accessible to planned future detectors), with the exception of a region when µ < 0 where for m 1/2 ≳ 450 GeV, 4 ≲ tanβ ≲ 20, the cross section drops to a minimum of about 1 × 10–12 pb at m 1/2 = 600 GeV, tanβ ⋍ 10. In this region, the gluino and squarks lie above 1 TeV, but should still be accessible to the LHC.


Dark Matter Higgs Mass Annihilation Cross Section Halo Dark Matter Current Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.a
    A.H. Chamseddine, R. Arnowitt, P. Nath: Phys. Rev. Lett. 49, 970 (1982)ADSCrossRefGoogle Scholar
  2. 1.b
    R. Barbieri, S. Ferrara, C.A. Savoy: Phys. Lett. B 119, 343 (1982)ADSCrossRefGoogle Scholar
  3. 1.c
    L. Hall, J. Lykken, S. Weinberg: Phys. Rev. D 27, 2359 (1983)ADSCrossRefGoogle Scholar
  4. 1.d
    P. Nath, R. Arnowitt, A.H. Chamseddine: Nucl. Phys. B 227, 121 (1983).ADSCrossRefGoogle Scholar
  5. 2.
    For previous analysis of nonuniversal models see: V. Berezinsky, A. Bottino, J. Ellis, N. Fornengo, G. Mignola, S. Scopel: Astropart. Phys. 5, 1 (1996)ADSCrossRefGoogle Scholar
  6. 2.a
    Ellis, N. Fornengo, G. Mignola, S. Scopel Astropart. Phys. 6, 333 (1996)Google Scholar
  7. 2.b
    P. Nath, R. Arnowitt: Phys. Rev. D 56, 2820 (1997)ADSCrossRefGoogle Scholar
  8. 2.c
    R. Arnowitt, P. Nath: Phys. Lett. B 437, 344 (1998)Google Scholar
  9. 2.d
    A. Bottino, F. Donato, N. Fornengo, S. Scopel: Phys. Rev. D 59, 095004 (1999)ADSCrossRefGoogle Scholar
  10. 2.e
    R. Arnowitt, P. Nath: Phys. Rev. D 60, 044002 (1999).ADSCrossRefGoogle Scholar
  11. 3.
    M. Alam et al.: Phys. Rev. Lett. 74, 2885 (1995).ADSCrossRefGoogle Scholar
  12. 4.
    S. Bertolini, F. Borzumati, A. Masiero, G. Ridolfi: Nucl. Phys. B 353, 591 (1991).ADSCrossRefGoogle Scholar
  13. 5.
    H. Anlauf: Nucl. Phys. B 430, 245 (1994)ADSCrossRefGoogle Scholar
  14. 5.a
    M. Chiuchini, G. Degrassi, P. Gambino, G.F. Giudice: Nucl. Phys. B 527, 21 (1998)ADSCrossRefGoogle Scholar
  15. 5.b
    Nucl. Phys. B 534, 3 (1998).ADSCrossRefGoogle Scholar
  16. 6.
    M. Carena, D. Garcia, U. Nierste, C.E.M. Wagner: hep-ph/0010003; G. Degrassi, P. Gambino, G.F. Giudice: hep-ph/0009337.Google Scholar
  17. 7.
    R. Arnowitt, B. Dutta, Y. Santoso: Coannihilation in SUGRA and D-Brane Models, in preparation.Google Scholar
  18. 8.
    M.B. Green, J.H. Schwarz, E. Witten: Superstring theory, vol. 2. (Cambridge University Press, 1987)Google Scholar
  19. 9.
    J. Ellis, R. Flores: Phys. Lett. B 263, 259 (1991)ADSCrossRefGoogle Scholar
  20. 9.a
    J. Ellis, R. Flores Phys. Lett. B 300, 175 (1993).ADSCrossRefGoogle Scholar
  21. 10.
    M. Olsson: Phys. Lett. B 482, 50 (2000); M. Pavan, R. Arndt, I. Strakovsky, R. Workman: nucl-th/9912034, Proc. of 8th International Symposium on Meson-Nucleon Physics and Structure of Nucleon, Zuoz, Switzerland, Aug., (1999).ADSCrossRefGoogle Scholar
  22. 11.
    A. Bottino, F. Donato, N. Fornengo, S. Scopel: Astropart. Phys. 13, 215 (2000).ADSCrossRefGoogle Scholar
  23. 12.
    H. Leutwyler: Phys. Lett. B 374, 163 (1996).ADSCrossRefGoogle Scholar
  24. 13.
    E. Accomando, R. Arnowitt, B. Dutta, Y. Santoso: Nucl. Phys. B 585, 124 (2000).ADSCrossRefGoogle Scholar
  25. 14.
    J. Ellis, T. Falk, K. Olive, M. Srednicki: Astropart. Phys. 13, 181 (2000).ADSCrossRefGoogle Scholar
  26. 15.
    J. Ellis, A. Ferstl, K. Olive: Phys. Lett. B 481, 304 (2000).ADSCrossRefGoogle Scholar
  27. 16.
    ATLAS: Detector and Physics Performance Technical Design Report, vol. 1, CERN-LHCC-99–14, ATLAS-TDR-14 (1999); vol. 2, CERN-LHCC-99–15, ATLAS-TDR-15 (1999).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • R. Arnowitt
    • 1
  • B. Dutta
    • 1
  • Y. Santoso
    • 1
  1. 1.Department of Physics, Center for Theoretical PhysicsTexas A&M UniversityCollege StationUSA

Personalised recommendations