Skip to main content

Big Bang Nucleosynthesis in the Precision Era

  • Conference paper
Dark Matter in Astro- and Particle Physics
  • 257 Accesses

Abstract

Recent measurements of the primeval deuterium abundance and improved nuclear input to big-bang nucleosynthesis (BBN) precisely peg the baryon density, \( {\Omega_B}{h^2} = 0.0189\pm 0.0019 \). The uncertainty is due to that in the deuterium abundance and input nuclear data, in the ratio of about 2 to 1. The tight constraint sets the stage for a direct comparison with current and planned measurements of the cosmic microwave background anisotropics, and with it, a cosmological test at the level of 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.H. Jaffe et al, astro-ph/0007333.

    Google Scholar 

  2. U. Seljak, this volume, (2001).

    Google Scholar 

  3. K. A. Olive, this volume, (2001).

    Google Scholar 

  4. D. Tytler et al, Physica Scripta T85, 12, (2000) (astro-ph/0001318).

    Article  ADS  Google Scholar 

  5. K.A. Olive, G. Steigman, & T. P. Walker, Phys. Rept. 333–334, 389 (2000).

    Article  Google Scholar 

  6. K.A. Olive, Eur. Phys. J. C 15, 133 (2000) (Review of Particle Properties).

    Article  ADS  Google Scholar 

  7. M.S. Turner, Phys. Rep. 333–334, 619 (2000).

    Article  Google Scholar 

  8. S. Sarkar, Rept. Prog. Phys. 59, 1493 (1996).

    Article  ADS  Google Scholar 

  9. C.J. Copi, D.N. Schramm and M.S. Turner, Science 267, 192 (1995).

    Article  ADS  Google Scholar 

  10. S. Buries et al, Phys. Rev. Lett. 82, 4176 (1999).

    Article  ADS  Google Scholar 

  11. K. M. Nollett and S. Burles, Phys. Rev. D 61, 123505 (2000).

    Article  ADS  Google Scholar 

  12. S. Buries, K. M. Nollett and M.S. Turner, Astrophys. J., submitted (astro-ph/0010171).

    Google Scholar 

  13. M. Smith, L. Kawano, and R. Malaney, Astrophys. J. Suppl. Ser. 85, 219 (1993); also see earlier work by

    Article  ADS  Google Scholar 

  14. L.M. Krauss and P. Romanelli, Astrophys. J. 358, 47 (1990).

    Article  ADS  Google Scholar 

  15. G. R. Caughlan and W. A. Fowler, At. Nucl. Data Tables, 40, 283 (1988).

    Article  ADS  Google Scholar 

  16. G. Fiorentini, E. Lisi, S. Sarkar, and F. L. Villante, Phys. Rev. D, 58, 063506, (1998).

    Article  ADS  Google Scholar 

  17. E. Vangioni-Flam, A. Coc, and M. Casse, A & A, 360, 15 (2000).

    ADS  Google Scholar 

  18. C. Brune, K. I. Hahn, R. W. Kavanagh, and P. R. Wrean, Phys. Rev. C, 60, 015801 (1999).

    Article  ADS  Google Scholar 

  19. G. M. Hale, D. C. Dodder, E. R. Sicilano, and W. B. Wilson, LANL ENDF-B/VI evaluation, 125, Rev. 2 (1997).

    Google Scholar 

  20. J. Linsky et al, Astrophys. J. 451, 335 (1995);

    Article  ADS  Google Scholar 

  21. J. Linsky, in The Primordial Nuclei and their Galactic Evolution, eds. N. Prantzos, M. Tosi, and R. Von Steiger (Kluwer Academic Publishers, Dordrecht, 1998), p.285;

    Chapter  Google Scholar 

  22. N. Piskunov et al, Astrophys. J. 474, 315 (1997);

    Article  ADS  Google Scholar 

  23. A. Vidal-Madjar et al, Astron. Astrophys. 338, 694 (1998).

    ADS  Google Scholar 

  24. R. Epstein, J. Lattimer and D.N. Schramm, Nature 276, 198 (1976).

    Article  ADS  Google Scholar 

  25. A. Songaila et al, Nature 368, 599 (1994).

    Article  ADS  Google Scholar 

  26. M. Rugers and C.J. Hogan, Astrophys. J. 459, L1 (1996).

    Article  ADS  Google Scholar 

  27. G. Steigman, Mon. Not. R. Astron. Soc. 269, 53L (1994).

    ADS  Google Scholar 

  28. K. Jedamzik and G. M. Fuller, Astrophys. J. 483, 564 (1997).

    Article  ADS  Google Scholar 

  29. S. Scully, M. Casse, K. A. Olive, and E. Vangioni-Flam, Astrophys. J. 476, 521 (1997).

    Article  ADS  Google Scholar 

  30. J. K. Webb, R. F. Carswell, K. M. Lanzetta, R. Ferlet, M. Lemoine, A. Vidal-Madjar, and D. V. Bowen, Nature, 388, 250 (1997).

    Article  ADS  Google Scholar 

  31. S. A. Levshakov, W. H. Kegel, and F. Takahara, Mon. Not. R. Astron. Soc. 302, 707 (1999).

    Article  ADS  Google Scholar 

  32. See e.g., W. Hu et al, astro-ph/0006436;

    Google Scholar 

  33. M. Tegmark and M. Zaldarriaga, astro-ph/0004393;

    Google Scholar 

  34. M. White et al, astro-ph/0004385;

    Google Scholar 

  35. A. Lange et al, astro-ph/0005004;

    Google Scholar 

  36. M. Tegmark et al, astro-ph/0008167;

    Google Scholar 

  37. W. H. Kinney et al, astro-ph/0007375; ]

    Google Scholar 

  38. M. Orito et al, astro-ph/0005446;

    Google Scholar 

  39. S. Esposito et al, astro-ph/0007419.

    Google Scholar 

  40. D. H. Weinberg, J. Miralda-Escude, L. Hernquist, and N. Katz, AStrophys. J., 490, 564 (1997).

    Article  ADS  Google Scholar 

  41. L. E. Grego, Ph. D. Thesis, Univ. of Chicago (1999).

    Google Scholar 

  42. K.A. Olive, G. Steigman and E. Skillman, Astrophys. J. 483, 788 (1998).

    Article  ADS  Google Scholar 

  43. Y. I. Izotov and T. X. Thuan, Astrophys. J. 500, 188 (1998).

    Article  ADS  Google Scholar 

  44. P. Bonifacio and P. Molaxo, Mon. Not. R. astron. Soc. 285, 847 (1997).

    Article  ADS  Google Scholar 

  45. The more recent work of S. G. Ryan et al, Astrophys. J. 523, 654 (1999) examines 23 metal-poor stars and finds a mean of (1.32 ±0.12) x 10–10. However, they also find a trend of 7Li/H with metallicity, so interpretation of this result is more complicated.

    Article  ADS  Google Scholar 

  46. S. Buries et al, Astrophys. J. 519, 18 (1999).

    Article  ADS  Google Scholar 

  47. E. J. Wampler et al, Astron. Astrophys. 316, 33 (1996).

    ADS  Google Scholar 

  48. D. Kirkman et al, Astrophys. J. 529, 655 (2000).

    Article  ADS  Google Scholar 

  49. S. Buries and D. Tytler, in The Primordial Nuclei and Their Galactic Evolution, eds. N. Prantzos, M. Tosi, and R. von Steiger (Kluwer, Dordrecht).

    Google Scholar 

  50. S. Burles and D. Tytler, Astrophys. J. 499, 699 (1998).

    Article  ADS  Google Scholar 

  51. S. Burles and D. Tytler, Astrophys. J. 507, 732 (1998).

    Article  ADS  Google Scholar 

  52. R. F. Carswell et al, Mon. Not. R. astron. Soc. 278, 506 (1996).

    Article  ADS  Google Scholar 

  53. D. Tytler et al, B.A.A.S. 196.3511T (2000); J. M. O’Meaxa et al, in preparation (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burles, S. (2001). Big Bang Nucleosynthesis in the Precision Era. In: Klapdor-Kleingrothaus, H.V. (eds) Dark Matter in Astro- and Particle Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56643-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56643-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62608-1

  • Online ISBN: 978-3-642-56643-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics