Skip to main content

Can Quintessence Be Natural?

  • Conference paper
Dark Matter in Astro- and Particle Physics
  • 253 Accesses

Abstract

We give a brief introduction to the framework of cosmological quintessence scenarios and formulate conditions for the naturalness of the underlying field theoretical models. The quintessence lagrangian is taken to be the sum of a simple exponentialpotential and a non-canonical kinetic term. This parameterization covers most variantsof quintessence and makes the naturalness conditions particularly transparent. Several “natural” scalar models lead, for the present cosmological era, to a large fraction ofhomogeneous dark energy density and an acceleration of the scale factor as suggestedby observation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Bahcall, J.P. Ostriker, S.Perlmutter and P.J. Steinhardt, Science 284 (1999)1481;

    Article  ADS  Google Scholar 

  2. L.M. Krauss, talk at PASCOS 98 (hep-ph/9807376)

    Google Scholar 

  3. S. Perlmutter et al., Astrophys. J. 517 (1998) 565;

    Article  ADS  Google Scholar 

  4. A.G. Riess et al, Astron. J. 116 (1998) 1009

    Article  ADS  Google Scholar 

  5. S. Weinberg, Rev. Mod. Phys. 61 (1989) 1 and talk at Dark Matter 2000 (astro-ph/0005265);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. S.M. Carroll, preprint EFI-2000–13 (astro-ph/0004075);

    Google Scholar 

  7. P. Binetruy, lectures at the 15th IAP Meeting on Galaxy Dynamics and the 4th Peyresq Meeting on Quantum Cosmology and Stochastic Gravity (hep-ph/0005037)

    Google Scholar 

  8. C. Brans and R.H. Dicke, Phys. Rev. 124 (1961) 925;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. O. Bertolami, Nuovo Cim. B93 (1986) 36

    Article  ADS  Google Scholar 

  10. M. Özer and M.O. Taha, Phys. Lett. B171 (1986) 363;

    ADS  Google Scholar 

  11. K. Preese, F.C. Adams, J.A. Prieman and E. Mottola, Nucl. Phys. B287 (1987) 797;

    ADS  Google Scholar 

  12. M. Reuter and C. Wetterich, Phys. Lett. B188 (1987) 38

    ADS  Google Scholar 

  13. A.D. Dolgov, in The Very Early Universe: Proc. of the 1982 Nuffield Workshop at Cambridge, ed. by G.W. Gibbons, S.W. Hawking and S.T.C. Siklos (Cambridge Univ. Press) p. 449;

    Google Scholar 

  14. L.F. Abbott, Phys. Lett. B150 (1985) 427;

    MathSciNet  ADS  Google Scholar 

  15. T. Banks, Nucl. Phys. B249 (1985) 332; R.D. Peccei, J. Sola and C. Wetterich, Phys. Lett. B195 (1987) 183

    Google Scholar 

  16. R.D. Peccei, J. Sola and C. Wetterich, Phys. Lett. B195 (1987) 183

    ADS  Google Scholar 

  17. S.M. Barr, Phys. Rev. D36 (1987) 1691

    MathSciNet  ADS  Google Scholar 

  18. C. Wetterich, Nucl. Phys. B302 (1988) 668;

    Article  ADS  Google Scholar 

  19. Astron. Astrophys. 301 (1995) 321(hep-ph/9408025)

    ADS  Google Scholar 

  20. B. Ratra and P.J.E. Peebles, Astrophys. J. Lett. 325 (1988) L17

    Article  ADS  Google Scholar 

  21. Phys. Rev. D37 (1988) 3406

    ADS  Google Scholar 

  22. E.J. Copeland, A.R. Liddle and D. Wands, Ann. N. Y. Acad. Sci. 688 (1993) 647

    Article  ADS  Google Scholar 

  23. Phys. Rev. D57 (1998) 4686

    ADS  Google Scholar 

  24. E.J. Copeland, A.R. Liddle and D. Wands, Ann. N. Y. Acad. Sci. 688 (1993) 647

    Article  ADS  Google Scholar 

  25. Phys. Rev. D58 (1998) 023503

    ADS  Google Scholar 

  26. R.R. Caldwell, R. Dave and P.J. Steinhardt, Phys. Rev. Lett. 80 (1998) 1582

    Article  ADS  Google Scholar 

  27. P.J. Steinhardt, L. Wang and I. Zlatev, Phys. Rev. Lett. 82 (1999) 896

    Article  ADS  Google Scholar 

  28. Phys. Rev. D59 (1999) 123504

    ADS  Google Scholar 

  29. A. Albrecht and C. Skordis, Phys. Rev. Lett. 84 (2000) 2076

    Article  ADS  Google Scholar 

  30. P. Brax, J. Martin, Phys. Lett. B468 (1999) 40

    MathSciNet  ADS  Google Scholar 

  31. I. Zlatev and P.J. Steinhardt, Phys. Lett. B459 (1999) 570

    ADS  Google Scholar 

  32. V. Sahni and L. Wang, astro-ph/9910097

    Google Scholar 

  33. T. Barreiro, E.J. Copeland and N.J. Nunes, Phys. Rev. D61 (2000) 127301

    ADS  Google Scholar 

  34. C. Armendariz-Picon, V. Mukhanov and P.J. Steinhardt, astro-ph/0004134 andastro-ph/0006373

    Google Scholar 

  35. F. Lucchin, S. Matarrese, Phys. Rev. D32 (1985) 1316

    ADS  Google Scholar 

  36. Y. Kitada, K. Maeda, Class. Quant. Grav. 10 (1993) 703

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. P.J. Steinhardt and F.S. Accetta, Phys. Rev. Lett. 64 (1990) 2740

    Article  ADS  Google Scholar 

  38. V.A. Rubakov, Phys. Rev. D61 (2000) 061501

    MathSciNet  ADS  Google Scholar 

  39. A. Hebecker and C. Wetterich, hep-ph/0003287, to appear in Phys. Rev. Lett.

    Google Scholar 

  40. P. Binetruy, Phys. Rev. D60 (1999) 063502

    ADS  Google Scholar 

  41. Q. Shafi and C. Wetterich, Phys. Lett. B129 (1983) 387 and B152 (1985) 51

    ADS  Google Scholar 

  42. M. Birkel and S. Sarkar, Astropart. Phys. 6 (1997) 197

    Article  ADS  Google Scholar 

  43. A. de la Macorra and G. Piccinelli, Phys. Rev. D61 (2000) 123503

    ADS  Google Scholar 

  44. K.I. Izawa, hep-ph/0005182; A.B. Kaganovich, hep-th/0007144

    Google Scholar 

  45. L. Amendola, Phys. Rev. D62 (2000) 043511

    ADS  Google Scholar 

  46. R. Bean and J. Magueijo, astro-ph/0007199

    Google Scholar 

  47. C. Wetterich, Phys. Rev. Lett. 78 (1997) 3598

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hebecker, A., Wetterich, C. (2001). Can Quintessence Be Natural?. In: Klapdor-Kleingrothaus, H.V. (eds) Dark Matter in Astro- and Particle Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56643-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56643-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62608-1

  • Online ISBN: 978-3-642-56643-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics