Skip to main content

Nuclear Export of Adenovirus RNA

  • Chapter
Nuclear Export of Viral RNAs

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 259))

Abstract

Adenoviruses are medium-sized, non-enveloped DNA viruses which nowadays include well over 100 different serotypes found in a wide range of mammalian and avian hosts. The human adenoviruses comprise over 47 different serotypes which cause lytic and persistent infections and have been associated with a variety of clinical syndromes (reviewed in Horwitz 1996). Following their discovery in latently infected adenoids more than 45 years ago, human adenoviruses stepped into the limelight of molecular virology when it was found that certain serotypes have oncogenic potential in newborn rodents and that all human adenoviruses can transform primary rodent cells in culture. These findings in particular inspired a period of intense research on adenovirus biology that contributed enormously to a molecular understanding of normal and malignant cell growth. In addition, studies on adenovirus productive infection in cultured cells have provided important insight into fundamental mechanisms in molecular biology, perhaps most notably, mRNA splicing. While these viruses still serve as a laboratory model to solve the mysteries of cell growth control, they are now being used in pre-clinical and clinical trials as vectors for gene therapy and more recently as oncolytic vehicles for the treatment of human cancer (reviewed in Bilbao et al. 1998; Benihoud et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aspegren A, Rabino C, Bridge E (1998) Organization of splicing factors in adenovirus-infected cells reflects changes in gene expression during the early to late phase transition. Exp Cell Res 245:203–213

    Article  PubMed  CAS  Google Scholar 

  • Babich A, Feldman LT, Nevins JR, Darnell JE, Weinberger C (1983) Effect of adenovirus on metabolism of specific host mRNAs: transport control and specific translation discrimination. Mol Cell Biol 3:1212–1221

    PubMed  CAS  Google Scholar 

  • Babiss LE, Ginsberg HS (1984) Adenovirus type 5 early region 1b gene product is required for efficient shutoff of host protein synthesis. J Virol 50:202–212

    PubMed  CAS  Google Scholar 

  • Babiss LE, Ginsberg HS, Darnell JJ (1985) Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol Cell Biol 5:2552–2558

    PubMed  CAS  Google Scholar 

  • Bachi A, Braun IC, Rodrigues JP, Panté N, Ribbeck K. von Kobbe C, Kutay U, Wilm M, Görlich D, Carmo-Fonseca M. Izaurralde E (2000) The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA 6:136–158

    Article  PubMed  CAS  Google Scholar 

  • Barker DD, Berk AJ (1987) Adenovirus proteins from both E1B reading frames arc required for transformation of rodent cells by viral infection and DNA transfection. Virology 156:107–121

    Article  PubMed  CAS  Google Scholar 

  • Beltz GA, Flint SJ (1979) Inhibition of HeLa cell protein synthesis during adenovirus infection: restriction of cellular messenger RNA sequences to the nucleus. J Mol Biol 131:353–373

    Article  PubMed  CAS  Google Scholar 

  • Benihoud K, Yeh P. Perricaudel M (1999) Adenovirus vectors for gene delivery. Curr Opin Biotech 10:440–447

    Article  PubMed  CAS  Google Scholar 

  • Berkner KL, Sharp PA (1985) Effect of the tripartite leader on synthesis of a non-viral protein in an adenovirus 5 recombinant. Nucleic Acids Res 13:841–857

    Article  PubMed  CAS  Google Scholar 

  • Bernards R, de Leeuw MG, Houweling A, van der Eb AJ (1986) Role of the adenovirus early region 1B tumor antigens in transformation and lytic infection. Virology 150:126–139

    Article  PubMed  CAS  Google Scholar 

  • Bilbao G, Contreras JL. Gómcz-Navarro J, Curiel DT (1998) Improving adenovirus vectors for gene therapy. Tumor Targeting 3:59–79

    CAS  Google Scholar 

  • Bischoff JR, Kirn DH, Wilhams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson Johannes A, Fattaey A, McCormick F (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274:373–376

    Article  PubMed  CAS  Google Scholar 

  • Boyer J, Rohleder K, Ketner G (1999) Adenovirus E4 34k and E4 Ilk inhibit double strand break repair and are physically associated with the cellular DNA-dependent protein kinase. Virology 263:307–312

    Article  PubMed  CAS  Google Scholar 

  • Bridge E, Ketner G (1989) Redundant control of adenovirus late gene expression by early region 4. J Virol 63:631–638

    PubMed  CAS  Google Scholar 

  • Bridge E, Ketner G (1990) Interaction of adenoviral E4 and E1b products in late gene expression. Virology 174:345–353

    Article  PubMed  CAS  Google Scholar 

  • Bridge E, Carmo-Fonseca M, Lamond A, Petterson U (1993) Nuclear organization of splicing small nuclear ribonucleoproteins in adenovirus-infected cells. J Virol 76:5792–5802

    Google Scholar 

  • Bridge E, Medghalchi S, Ubol S, Leesong M, Ketner G (1993) Adenovirus early region 4 and viral DNA synthesis. Virology 193:794–801

    Article  PubMed  CAS  Google Scholar 

  • Bridge E, Pettersson U (1995) Nuclear organization of replication and gene expression in adenovirus-infected cells. Curr Top Microbiol Immunol 199:99–117

    Article  PubMed  CAS  Google Scholar 

  • Bridge E, Pettersson U (1996) Nuclear organization of adenovirus RNA biogenesis. Exp Cell Res 229:233–239

    Article  PubMed  CAS  Google Scholar 

  • Bridge E, Riedel KU, Johansson BM, Pettersson U (1996) Spliced exons of adenovirus late RNAs colocalize with snRNP in a specific nuclear domain. J Cell Biol 135:303–314

    Article  PubMed  CAS  Google Scholar 

  • Carvalho T, Seeler JS, Ohman K, Jordan P, Pettersson U, Akusjärvi G, Carmo Fonseca M, Dejean A (1995) Targeting of adenovirus El A and E4-ORF3 proteins to nuclear matrix-associated PML bodies. J Cell Biol 131:45–56

    Article  PubMed  CAS  Google Scholar 

  • Chang DD, Sharp PA (1989) Regulation by HIV Rev depends upon recognition of splice sites. Cell 59:789–795

    Article  PubMed  CAS  Google Scholar 

  • Cole CN, Hammell CM (1998) Nucleocytoplasmic transport: driving and directing transport. Curr Biol 8:368–372

    Article  Google Scholar 

  • Cullen BR (1998) Posttranscriptional regulation by the HIV-1 Rev protein. Semin Virol 8:327–334

    Article  CAS  Google Scholar 

  • Cutt JR, Shenk T, Hearing P (1987) Analysis of adenovirus early region 4-encoded polypeptides synthesized in productively infected cells. J Virol 61:543–552

    PubMed  CAS  Google Scholar 

  • Denome RM, Werner EA, Patterson RJ (1989) RNA metabolism in nuclei: adenovirus and heat shock alter intranuclear RNA compartmentalization. Nucleic Acids Res 17:2081–2098

    Article  PubMed  CAS  Google Scholar 

  • Dix I, Leppard KN (1993) Regulated splicing of adenovirus type 5 E4 transcripts and regulated cytoplasmic accumulation of E4 mRNA. J Virol 67:3226–3231

    PubMed  CAS  Google Scholar 

  • Dobbelstein M, Roth J, Kimberly WT, Levine AJ, Shenk T (1997) Nuclear export of the ElB 55-kDa and E4 34-kDa adenoviral oncoproteins mediated by a rev-hke signal sequence. EMBO J 16:4276–4284

    Article  PubMed  CAS  Google Scholar 

  • Dobner T, Horikoshi N, Rubenwolf S, Shenk T (1996) Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 272:1470–1473

    Article  PubMed  CAS  Google Scholar 

  • Dolph PJ, Racaniello V, Villamarin A, Palladino F, Schneider RJ (1988) The adenovirus tripartite leader may eliminate the requirement for cap-binding protein complex during translation initiation. J Virol 62:2059–2066

    PubMed  CAS  Google Scholar 

  • Dolph PJ, Huang JT, Schneider RJ (1990) Translation by the adenovirus tripartite leader: elements which determine independence from cap-binding protein complex. J Virol 64:2669–2677

    PubMed  CAS  Google Scholar 

  • Doucas V, Ishov AM, Romo A, Juguilon H, Weitzman MD, Evans RM, Maul GG (1996) Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev 10: 196–207

    Article  PubMed  CAS  Google Scholar 

  • Fackelmayer FO, Dahm K, Renz A, Ramsperger U, Richter A (1994) Nucleic-acid-binding properties of hnRNP-U/SAF-A, a nuclear-matrix protein which binds DNA and RNA in vivo and in vitro. Eur J Biochem 221:749–757

    Article  PubMed  CAS  Google Scholar 

  • Farjot G, Sergeant A, Mikaelian I (1999) A new nucleoporin-like protein interacts with both HIV-1 Rev nuclear export signal and CRM-1. J Biol Chem 274:17309–17317

    Article  PubMed  CAS  Google Scholar 

  • Ferrari FK, Samulski T, Shenk T, Samulski RJ (1996) Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 70:3227–3234

    PubMed  CAS  Google Scholar 

  • Fischer N, Voss MD, Mueller-Lantzsch N, Grässer FA (1999) A potential NES of the Epstein-Barr virus nuclear antigen 1 (EBNA1) does not confer shuttling. FEBS Lett 447:311–314

    Article  PubMed  CAS  Google Scholar 

  • Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM (1996) Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 70:520–532

    PubMed  CAS  Google Scholar 

  • Gabler S, Schütt H, Groitl P, Wolf H, Shenk T, Dobner T (1998) E1B 55-kilodalton-associated protein: a cellular protein with RNA-binding activity implicated in nucleocytoplasmic transport of adenovirus and cellular mRNAs. J Virol 72:7960–7971

    PubMed  CAS  Google Scholar 

  • Gaynor RB, Hillman D, Berk AJ (1984) Adenovirus early region 1A protein activates transcription of a novel gene introduced into mammalian cells by infection or transfection. Proc Natl Acad Sci USA 81:1193–1197

    Article  PubMed  CAS  Google Scholar 

  • Goodrum FD, Shenk T, Ornelles DA (1996) Adenovirus early region 4 34-kilodalton protein directs the nuclear localization of the early region IB 55-kilodalton protein in primate cells. J Virol 70:6323–6335

    PubMed  CAS  Google Scholar 

  • Goodrum FA, Ornelles DA (1997) The early region 1B 55-kilodalton oncoprotein of adenovirus relieves growth restrictions imposed on viral replication by the cell cycle. J Virol 71:548–561

    PubMed  CAS  Google Scholar 

  • Goodrum FD, Ornelles DA (1998) p53 status does not determine outcome of E1B 55-Kilodalton mutant adenovirus lytic infection. J Virol 72:9479–9490

    PubMed  CAS  Google Scholar 

  • Goodrum FD, Ornelles DA (1999) Roles for the E4 orf6, orf3, and E1B 55-kilodalton proteins in cell cycle-independent adenovirus replication. J Virol 73:7474–7488

    PubMed  CAS  Google Scholar 

  • Görlich D, Mattaj IW (1996) Nucleocytoplasmic transport. Science 271:1513–1518

    Article  PubMed  Google Scholar 

  • Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    Article  PubMed  Google Scholar 

  • Grifman M, Chen NN, Gao G, Cathomen T, Wilson JM, Weitzman MD (1999) Overexpression of cyclin A inhibits augmentation of recombinant adeno-associated virus transduction by the adenovirus E4orf6 protein. J Virol 73:10010–10019

    PubMed  CAS  Google Scholar 

  • Halbert DN, Cutt JR, Shenk T (1985) Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J Virol 56:250–257

    PubMed  CAS  Google Scholar 

  • Hamm J, Mattaj IW (1990) Monomethylated cap structures facilitate RNA export from the nucleus. Cell 63:109–118

    Article  PubMed  CAS  Google Scholar 

  • Harada JN, Berk AJ (1999) p53-independent and-dependent requirements for E1B-55k in adenovirus type 5 replication. J Virol 73:5333–5344

    PubMed  CAS  Google Scholar 

  • Harrison T, Graham F, Williams J (1977) Host-range mutants of adenovirus type 5 defective for growth in HeLa cells. Virology 77:319–329

    Article  PubMed  CAS  Google Scholar 

  • Hearing P, Shenk T (1985) Sequence-independent auto-regulation of the adenovirus type E1A transcription unit. Mol Cell Biol 5:3214–3221

    PubMed  CAS  Google Scholar 

  • Heise C, Sampson Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH (1997) ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3:639 645

    Article  PubMed  Google Scholar 

  • Ho YS, Galos R, Williams J (1982) Isolation of type 5 adenovirus mutants with a cold-sensitive host range phenotype: genetic evidence of an adenovirus transformation maintenance function. Virology 122:109–124

    Article  PubMed  CAS  Google Scholar 

  • Horridge JJ, Leppard KN (1998) RNA-binding activity of the E1B 55-kilodalton protein from human adenovirus type 5. J Virol 72:9374–9379

    PubMed  CAS  Google Scholar 

  • Horwitz MS (1996) Adenoviruses. In: Fields BN, Knipe DM, Howley PM (eds) Virology. Lippincott-Raven, New York, pp 2149–2171

    Google Scholar 

  • Huang MM, Hearing P (1989) Adenovirus early region 4 encodes two gene products with redundant effects in lytic infection. J Virol 63:2605–2615

    PubMed  CAS  Google Scholar 

  • Huang JT, Schneider RJ (1991) Adenovirus inhibition of cellular protein synthesis involves inactivation of cap-binding protein. Cell 65:271–280

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Flint SJ (1998) The tripartite leader sequence of subgroup C adenovirus major late mRNAs can increase the efficiency of mRNA export. J Virol 72:225–235

    PubMed  CAS  Google Scholar 

  • Imperiale MJ, Akusjärvi G, Leppard KN (1995) Post-transcriptional control of adenovirus gene expression. Curr Top Microbiol Immunol 199:139–171

    Article  PubMed  CAS  Google Scholar 

  • Ishov AM, Maul GG (1996) The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 134:815–826

    Article  PubMed  CAS  Google Scholar 

  • Jiménez-Garcia LF, Spector DL (1993) In vivo evidence that transcription and splicing are coordinated by a recruiting mechanism. Cell 73:47–59

    Article  PubMed  Google Scholar 

  • Kanopka A, Muhlemann O, Petersen Mahrt S, Estmer C, Ohrmalm C, Akusjärvi G (1998) Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature 393:185–187

    Article  PubMed  CAS  Google Scholar 

  • Kiledjian M, Dreyfuss G (1992) Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J 11:2655–2664

    PubMed  CAS  Google Scholar 

  • Kleinberger T, Shenk T (1993) Adenovirus E4orf4 protein binds to protein phosphatase 2A, and the complex down regulates E1A-enhanced junB transcription. J Virol 67:7556–7560

    PubMed  CAS  Google Scholar 

  • König C, Roth J, Dobbelstein M (1999) Adenovirus type 5 E4orf3 protein relieves p53 inhibition by E1B-55-kilodalton protein. J Virol 73:2253–2262

    PubMed  Google Scholar 

  • Krätzer F, Rosorius O, Heger P, Hirschmann N, Dobner T, Hauber J, Stauber RH (2000) The adeno-virus type 5 E1B-55k oncoprotein is a highly active shuttle protein and shuttling is independent of E4orf6, p53 and Mdm2. Oncogene 19:850–857

    Article  PubMed  Google Scholar 

  • Lamphear BJ, Panniers R (1991) Heat shock impairs the interaction of cap-binding protein complex with 5′ mRNA cap. J Biol Chem 266:2789–2794

    PubMed  CAS  Google Scholar 

  • Lavoie JN, Nguyen M, Marcellus RC, Branton PE, Shore GC (1998) E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J Cell Biol 140:637–645

    Article  PubMed  CAS  Google Scholar 

  • Legrain P, Rosbash M (1989) Somce eis-and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell 57:573–583

    Article  PubMed  CAS  Google Scholar 

  • Leppard KN, Shenk T (1989) The adenovirus E1B 55 kd protein influences mRNA transport via an intranuclear effect on RNA metabolism. EMBO J 8:2329–2336

    PubMed  CAS  Google Scholar 

  • Leppard KN (1993) Selective effects on adenovirus late gene expression of deleting the E1b 55K protein. J Gen Biol 74:575–582

    CAS  Google Scholar 

  • Leppard KN (1997) E4 gene function in adenovirus, adenovirus vector and adeno-associated virus infections. J Gen Biol 78:2131–2138

    CAS  Google Scholar 

  • Leppard KN (1998) Regulated RNA processing and RNA transport during adenovirus infection. Semin Virol 8:301–307

    Article  CAS  Google Scholar 

  • Leppard KN, Everett RD (1999) The adenovirus type 5 E1b 55K and E4 Orf3 proteins associate in infected cells and aff’ect ND10 components. J Gen Biol 80:997–1008

    CAS  Google Scholar 

  • Liang S, Hitomi M, Tartakoff AM (1995) Adenoviral E1B-55kDa protein inhibits yeast mRNA export and perturbs nuclear structure. Proc Natl Acad Sci USA 92:7372–7375

    Article  PubMed  CAS  Google Scholar 

  • Liao D, Yu A, Weiner AM (1999) Coexpression of the adenovirus 12 E1B 55kDa oncoprotein and cellular tumor suppressor p53 is sufficient to induce metaphase fragility of the human RNU2 locus. Virology 254:11–23

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Chen J, Elenbaas B, Levine AJ (1994) Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 8:1235–1246

    Article  PubMed  CAS  Google Scholar 

  • Logan J, Shenk T (1984) Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection. Proc Natl Acad Sci USA 81:3655–3659

    Article  PubMed  CAS  Google Scholar 

  • Mathews MB, Shenk T (1991) Adenovirus virus-associated RNA and translation control. J Virol 65:5657–5662

    PubMed  CAS  Google Scholar 

  • Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67:265–306

    Article  PubMed  CAS  Google Scholar 

  • Maul GG (1998) Nuclear domain 10, the site of DNA virus transcription and replication. BioEssays 20(8):660–667

    Article  PubMed  CAS  Google Scholar 

  • Moore M, Schaack J, Baim SB, Morimoto RI, Shenk T (1987) Induced heat shock mRNAs escape the nucleocytoplasmic transport block in adenovirus-infected HeLa cells. Mol Cell Biol 7: 4505–4512

    PubMed  CAS  Google Scholar 

  • Moore MA, Shenk T (1988) The adenovirus tripartite leader sequence can alter nuclear and cytoplasmic metabolism of a non-adenovirus mRNA within infected cells. Nucleic Acids Res 16:2247–2262

    Article  PubMed  CAS  Google Scholar 

  • Moore M, Horikoshi N, Shenk T (1996) Oncogenic potential of the adenovirus E4orf6 protein. Proc Natl Acad Sci USA 93:11295–11301

    Article  PubMed  CAS  Google Scholar 

  • Müller U, Kleinberger T, Shenk T (1992) Adenovirus E4orf4 protein reduces phosphorylation of c-Fos and E1A proteins while simultaneously reducing the level of AP-1. J Virol 66:5867–5878

    PubMed  Google Scholar 

  • Nakielny S, Dreyfuss G (1999) Transport of proteins and RNAs in and out of the nucleus. Cell 99:677–690

    Article  PubMed  CAS  Google Scholar 

  • Nevels M, Rubenwolf S, Spruss T, Wolf H, Dobner T (1997) The adenovirus E4orf6 protein can promote E1A/E1B-induced focus formation by interfering with p53 tumor suppressor function. Proc Natl Acad Sci USA 94:1206–1211

    Article  PubMed  CAS  Google Scholar 

  • Nevels M, Spruss T, Wolf H, Dobner T (1999a) The adenovirus E4orf6 protein contributes to malignant transformation by antagonizing E1A-induced accumulation of the tumor suppressor protein p53. Oncogene 18:9–17

    Article  PubMed  CAS  Google Scholar 

  • Nevels M, Täuber B, Kremmer E, Spruss T, Wolf H, Dobner T (1999b) Transforming potential of the adenovirus type 5 E4orß protein. J Virol 73:1591–1600

    PubMed  CAS  Google Scholar 

  • Nevels M, Rubenwolf S, Spruss T, Wolf H, Dobner T (2000) Two distinct activities contribute to the oncogenic potential of the adenovirus type 5 E4orf6 protein. J Virol (in press)

    Google Scholar 

  • Neville M, Stutz F, Lee L, Davis EL Rosbash M (1997) The importin-beta family member Crm1p bridges the interaction between Rev and the nuclear pore complex during nuclear export. Curr Biol 7:767–775

    Article  PubMed  CAS  Google Scholar 

  • Nicolás AL, Munz PL, Falck-Pedersen E, Young CSH (2000) Creation and repair of specific DNA double-strand breaks in vivo following infection with adenovirus vectors expressing Saccharomyces cervisiae HO endonuclease. Virology 266:211–224

    Article  PubMed  CAS  Google Scholar 

  • Nordqvist K, Akusjärvi G (1990) Adenovirus early region 4 stimulates mRNA accumulation via 5′ introns. Proc Natl Acad Sci USA 87:9543–9547

    Article  PubMed  CAS  Google Scholar 

  • Nordqvist K, Öhman K, Akusjärvi G (1994) Human adenovirus encodes two proteins which have opposite effects on accumulation of alternatively spliced mRNAs. Mol Cell Biol 14:437–445

    PubMed  CAS  Google Scholar 

  • Öhman K, Nordqvist K, Akusjärvi G (1993) Two adenovirus proteins with redundant activities in virus growth facilitates tripartite leader mRNA accumulation. Virology 194:50–58

    Article  PubMed  Google Scholar 

  • Orlando JS, Ornelles DA (1999) An arginine-faced amphipathic alpha helix is required for adenovirus type 5 E4orf6 protein function. J Virol 73:4600–4610

    PubMed  CAS  Google Scholar 

  • Ornelles DA, Shenk T (1991) Localization of the adenovirus early region 1B 55-kilodalton protein during lytic infection: association with nuclear viral inclusions requires the early region 4 34-kilodalton protein. J Virol 65:424–429

    PubMed  CAS  Google Scholar 

  • Pilder S, Moore M, Logan J, Shenk T (1986) The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol Cell Biol 6: 470–476

    PubMed  CAS  Google Scholar 

  • Pollard VW, Malim MH (1998) The H1V-1 rev protein. Annu Rev Microbiol 52:491–532

    Article  PubMed  CAS  Google Scholar 

  • Pombo A, Ferreira J, Bridge E, Carmo-Fonseca M (1994) Adenovirus replication and transcription sites are spatially separated in the nucleus of infected cells. EMBO J 13:5075–5085

    PubMed  CAS  Google Scholar 

  • Puvion Dutilleul F, Richard E (1992) Segregation of viral double-stranded and single-stranded DNA molecules in nuclei of adenovirus infected cells as revealed by electron microscope in situ hybridization. Biol Cell 76:139–150

    Article  Google Scholar 

  • Puvion-Dutilleul F, Chelbi-Alix MK, Koken M, Quignon F, Puvion E, de The H (1995) Adenovirus infection induces rearrangements in the intranuclear distribution of the nuclear body-associated PML protein. Exp Cell Res 218:9–16

    Article  PubMed  CAS  Google Scholar 

  • Querido E, Marcellus R, Lai A. Rachel C. Teodoro JG, Ketner G, Branton PE (1997) Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells. J Virol 71:3788–3798

    PubMed  CAS  Google Scholar 

  • Rebelo L, Almeida F, Ramos C, Bohmann K, Lamond AI, Carmo Fonseca M (1996) The dynamics of coiled bodies in the nucleus of adenovirus-infected cells. Mol Biol Cell 7:1137–1151

    PubMed  CAS  Google Scholar 

  • Roth J, König C. Wienzek S, Weigel S, Ristea S, Dobbelstein M ( 1998) Inactivation of p53 but not p73 by adenovirus type 5 E1B 55-Kilodalton and E4 34-Kilodalton oncoproteins. J Virol 72:8510–8516

    PubMed  CAS  Google Scholar 

  • Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, zur Hausen H (1998) Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 72:9470–9478

    PubMed  CAS  Google Scholar 

  • Roulston A, Marcellus RC, Branton PE (1999) Viruses and apoptosis. Annu Rev Microbiol 53:577–628

    Article  PubMed  CAS  Google Scholar 

  • Rubenwolf S, Schütt H, Nevels M, Wolf H. Dobner T (1997) Structural analysis of the adenovirus type 5 E1B 55-kilodalton-E4orf6 protein complex. J Virol 71:1115–1123

    PubMed  CAS  Google Scholar 

  • Saavedra CA, Hammell CM, Heath CV. Cole CN (1997) Yeast heat shock mRNAs are exported through a distinct pathway defined by Rip1p. Genes Dev 11:2845–2856

    Article  PubMed  CAS  Google Scholar 

  • Samulski RJ, Shenk T (1988) Adenovirus E1B 55-Mr polypeptide facilitates timely cytoplasmic accumulation of adeno-associated virus mRNAs. J Virol 62:206–210

    PubMed  CAS  Google Scholar 

  • Sandler AB, Ketner G (1989) Adenovirus early region 4 is essential for normal stability of late nuclear RNAs. J Virol 63:624–630

    PubMed  CAS  Google Scholar 

  • Sarnow P, Sullivan CA. Levine AJ (1982a) A monoclonal antibody detecting the adenovirus type 5-E1b-58Kd tumor antigen: characterization of the E1b-58Kd tumor antigen in adenovirus-infected and-transformed cells. Virology 120:510–517

    Article  PubMed  CAS  Google Scholar 

  • Sarnow P, Ho YS. Williams J, Levine AJ (1982b) Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54kd cellular protein in transformed cells. Cell 28:387–394

    Article  PubMed  CAS  Google Scholar 

  • Sarnow P, Hearing P, Anderson CW, Halbert DN, Shenk T, Levine AJ (1984) Adenovirus early region 1B 58,000-dalton tumor antigen is physically associated with an early region 4 25,000-dalton protein in productively infected cells. J Virol 49:692–700

    PubMed  CAS  Google Scholar 

  • Seeler J-S, Dejean A (1999) The PML nuclear bodies: actors or extras? Curr Opin Gen Dev 9:362–367

    Article  CAS  Google Scholar 

  • Shenk T (1996) Adenoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Virology. Lippincott-Raven, New York, pp 2111–2148

    Google Scholar 

  • Shtrichman R, Kleinberger T (1998) Adenovirus type 5 E4 open reading frame 4 protein induces apoptosis in transformed cells. J Virol 72:2975–2982

    PubMed  CAS  Google Scholar 

  • Shtrichman R, Sharf R, Barr H, Dobner T, Kleinberger T (1999) Induction of apoptosis by adenovirus E4-open-reading-frame-4 protein is specific to transformed cells and requires an interaction with protein phosphatase 2A. Proc Natl Acad Sci USA 96:10080–10085

    Article  PubMed  CAS  Google Scholar 

  • Smiley JK, Young MA, Flint SJ (1990) Intranuclear location of the adenovirus type 5 E1B 55-kilodalton protein. J Virol 64:4558–4564

    PubMed  CAS  Google Scholar 

  • Steegenga WT, Riteco N, Jochemsen AG, Fallaux FJ, Bos JL (1998) The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene 16:349–357

    Article  PubMed  CAS  Google Scholar 

  • Sternsdorf T, Grotzinger T, Jensen K, Will H (1997) Nuclear dots: actors on many stages. Immuno-biology 198: 307–331

    Article  CAS  Google Scholar 

  • Stutz F, Kantor J, Zhang D, McCarthy T, Neville M, Rosbash M (1997) The yeast nucleoporin rip1p contributes to multiple export pathways with no essential role for its FG-repeat region. Genes Dev 11:2857–2868

    Article  PubMed  CAS  Google Scholar 

  • Stutz F, Neville M, Rosbash M (1995) Identification of a novel nuclear pore-associated protein as a functional target of the HIV-1 Rev protein in yeast. Cell 82:495–506

    Article  PubMed  CAS  Google Scholar 

  • Stutz F, Rosbash M (1998) Nuclear RNA export. Genes Dev 12:3303–3310

    Article  PubMed  CAS  Google Scholar 

  • Turnell AS, Grand RJA, Gallimore PH (1999) The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074–2083

    PubMed  CAS  Google Scholar 

  • von Kries JP, Buck F, Stratling WH (1994) Chicken MAR binding protein p120 is identical to human heterogeneous nuclear ribonucleoprotein (hnRNP) U. Nucleic Acids Res 22:1215–1220

    Article  Google Scholar 

  • Weiden MD, Ginsberg HS (1994) Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91:153–157

    Article  PubMed  CAS  Google Scholar 

  • Weigel S, Dobbelstein M (2000) The nuclear export signal within the E4orf6 protein of adenovirus type 5 supports virus replication and cytoplasmic accumulation of viral mRNA. J Virol 74:764–772

    Article  PubMed  CAS  Google Scholar 

  • Weinberg DH, Ketner G (1986) Adenoviral early region 4 is required for efficient viral DNA replication and for late gene expression. J Virol 57:833–838

    PubMed  CAS  Google Scholar 

  • White E (1998) Regulation of apoptosis by adenovirus E1A and E1B oncoproteins. Semin Virol 8: 505–513

    Article  CAS  Google Scholar 

  • Wienzek S, Roth J, Dobbelstein M (2000) ElB 55-kilodalton oncoproteins of adenovirus types 5 and 12 inactivate and relocalize p53, but not p51 or p73, and cooperate with E4orf6 proteins to destabilize p53. J Virol 74:193–202

    Article  PubMed  CAS  Google Scholar 

  • Williams J, Karger BD, Ho YS, Castigha CL, Mann T, Flint SJ (1986) The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275–284

    CAS  Google Scholar 

  • Williams RD, Leppard KN (1996) Human immunodeficiency virus type 1 Rev-dependent effects on the late gene expression of recombinant human adenovirus. Virus Genes 13:111–120

    Article  PubMed  CAS  Google Scholar 

  • Yang UC, Huang W, Flint SJ (1996) mRNA export correlates with activation of transcription in human subgroup C adenovirus-infected cells. J Virol 70:4071–4080

    PubMed  CAS  Google Scholar 

  • Yew PR, Kao CC, Berk AJ (1990) Dissection of functional domains in the adenovirus 2 early 1B 55K polypeptide by suppressor-linker insertional mutagenesis. Virology 179:795–805

    Article  PubMed  CAS  Google Scholar 

  • Yew PR, Berk AJ (1992) Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357:82–85

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Schneider RT (1993) Adenovirus inhibition of cellular protein synthesis and the specific translation of late viral mRNAs. Semin Virol 4:229–236

    Article  CAS  Google Scholar 

  • Zhang Y, Feigenbaum D, Schneider RJ (1994) A late adenovirus factor induces eIF-4E dephosphorylation and inhibition of cell protein synthesis. J Virol 68:7040–7050

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dobner, T., Kzhyshkowska, J. (2001). Nuclear Export of Adenovirus RNA. In: Hauber, J., Vogt, P.K. (eds) Nuclear Export of Viral RNAs. Current Topics in Microbiology and Immunology, vol 259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56597-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56597-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62522-0

  • Online ISBN: 978-3-642-56597-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics