Skip to main content

The Orbit Space Method: Theory and Application

  • Conference paper
  • 1060 Accesses

Abstract

If a system does not change its structure, while it is exposed to some transformations such as translations, rotations, reflections, or even more complicated transformations, it possesses symmetry. This is a feature of a host of phenomena. A good mathematical description of them must take the symmetry into account. Further symmetry may come about by simplifications. Often, deep statements are possible just by symmetry arguments. On the other hand, the presence of symmetry helps to analyze a given system. For example, one can find new solutions knowing a special one. Or, the symmetry may exclude some situations or force some phenomena to appear, which usually do not occur in generic nonsymmetrical systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, R. H., and Marsden, J. E. Foundations of Mechanics. Benjamin, Reading, Massachusetts, 1978.

    Google Scholar 

  2. Abud, M., and Sartori, G. The geometry of spontaneous symmetry breaking. Annals of Physics 150(1983), 307–372.

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, L. Random Dynamical Systems. Springer-Verlag, Berlin, 1998.

    Book  MATH  Google Scholar 

  4. Bierstone, E. Lifting isotopies from orbit space. Topology 14(1975), 245–252.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bredon, G. E. Introduction in Compact Transformation Groups. Academic Press, New York, 1972.

    Google Scholar 

  6. Bremigan, R. J. Cohomology and real algebraic quotients. J. Algebra 159 (1993), 275–305.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chossat, P. Forced reflectional symmetry breaking of an O(2)-symmetric homoclinic cycle. Nonlinearity 6 (1993), 723–731.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chossat, P., and Dias, F. The 1:2 resonance with O(2)-symmetry and its application in hydrodynamics. J. Nonlinear Sci. 6 (1995), 723–732.

    MathSciNet  Google Scholar 

  9. Chossat, P., Guyard, F., and Lauterbach, R. Generalized heteroclinic cycles in spherically invariant systems and their perturbations, preprint, Berlin, 1998.

    Google Scholar 

  10. Chossat, P., and Lauterbach, R. Le théor è me de Hartman-Grobman et la réduction à l’espace des orbits. C. R. Acad. Sci. Paris 325(1997), 595–600.

    Article  MathSciNet  MATH  Google Scholar 

  11. Derksen, H. Computation of Invariants for Reductive Groups. Universität Basel, 1997.

    Google Scholar 

  12. Fiedler, B., Sandstede, B., Scheel, A., and Wulff, C. Bifurcation from relative equilibria of noncompact group actions: Skew products, meanders, and drifts. Documenta Mathematica 1 (1996), 479–505.

    MathSciNet  MATH  Google Scholar 

  13. Field, M. Equivariant dynamical systems. Transactions of the AMS 259(1980), 185–205.

    Article  MathSciNet  MATH  Google Scholar 

  14. Field, M. Local Structur of Equivariant Dynamics. In Singularity Theory and its Applications II, M. Roberts and I. Stewart (Eds.), Lecture Notes in Mathematics 1463, Springer-Verlag, Berlin, 1991, 142–166.

    Chapter  Google Scholar 

  15. Gatermann, K. Computer Algebra Methods for Equivariant Dynamical Systems. LNM 1728, Springer-Verlag, Berlin, 2000.

    Book  MATH  Google Scholar 

  16. Golubitsky, M. and Schaeffer, D. G. Singularities and Groups in Bifurcation Theory I, vol. 51 of Appl. Math. Sci. Springer-Verlag, New York, 1985.

    Google Scholar 

  17. Golubitsky, M., Stewart, I., and Schaeffer, D. G. Singularities and Groups in Bifurcation Theory II, vol. 69 of Appl. Math. Sci. Springer-Verlag, New York, 1988.

    Google Scholar 

  18. Greuel, G.-M., Pfister, G., and Schönemann, H. Singular version 1.2 User Manual. In Reports On Computer Algebra, no. 21. Centre for Computer Algebra, University of Kaiserslautern, June 1998. http://www.mathematik.uni-kl.de/~zca/Singular

  19. Harris, J. Algebraic Geometry, vol. 133 of Graduated Texts in Mathematics. Springer-Verlag, New York, 1992.

    Google Scholar 

  20. Jänich, K. Differenzierbare G-Mannigfaltigkeiten. Lecture Notes in Mathematics 59, Springer-Verlag, Berlin, Heidelberg, 1968.

    Google Scholar 

  21. Kato, T. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1966.

    MATH  Google Scholar 

  22. Kemper, G. Calculating invariant rings of finite groups over arbitrary fields. J. Symb. Comput. 21(1996), 351–366.

    Article  MathSciNet  MATH  Google Scholar 

  23. Kcenig, M. Linearization of vector fields on the orbit space of the action of a compact Lie group. Math. Proc. Camb. Phil. Soc. 121(1997), 401–424.

    Article  Google Scholar 

  24. Krupa, M. Bifurcations of relative equilibria. SIAM J. Math. Anal. 21 (1990), 1453–1486.

    Article  MathSciNet  MATH  Google Scholar 

  25. Laure, P., Menck, J., and ScheURLe, J. Quasiperiodic drift flow in the Couette-Taylor problem. In Bifurcation and Symmetry (Marburg 1991), Internat. Ser. Numer. Math. 104, Birkhäuser Verlag, Basel, 1992, 191–202.

    Chapter  Google Scholar 

  26. Lauterbach, R., and Sanders, J. Bifurcation analysis for spherically symmetric systems using invariant theory. J. Dyn. Differ. Equations 9 (1997), 535–560.

    Article  MathSciNet  MATH  Google Scholar 

  27. Mather, J. N. Differentiable Invariants. Topology 16 (1977), 145–155.

    Article  MathSciNet  MATH  Google Scholar 

  28. Melbourne, I., Lamb, J., and Wulff, C. Bifurcation from Relative Periodic Solutions. Berlin, 1999.

    Google Scholar 

  29. Menck, J. Analyse nichthyperbolischer Gleichgewichtspunkte in dynamischen Systemen unter Ausnutzung von Symmetrien, mit Anwendungen von Computeralgebra. Doctoral thesis, Universität Hamburg, 1992.

    Google Scholar 

  30. Procesi, C, and Schwarz, G. W. Inequalities defining orbit spaces. Invent. Math. 81 (1985), 539–554.

    Article  MathSciNet  MATH  Google Scholar 

  31. Rumberger, M. Lyapunov exponents on the orbit space. Discrete Contin. Dynam. Systems 7 (2001).

    Google Scholar 

  32. Rumberger, M. On the eigenvalues on the orbit space, to appear in J. Pure and Appl. Algebra.

    Google Scholar 

  33. Rumberger, M. Symmetrische dynamische Systeme: Differenzierbarkeit und linearisierte Stabilität. Doctoral thesis, Universität Hamburg, 1997.

    Google Scholar 

  34. Rumberger, M. Finitely differentiable invariants. Math. Zeitschrift 229(1998), 675–694.

    Article  MathSciNet  MATH  Google Scholar 

  35. Rumberger, M., and ScheURLe, J. Invariant Cr-Functions and Center Manifold Reduction. Progress in Nonlinear Differential Equations and Their Applications 19, Birkhäuser Verlag, Basel, 1996, 145–153.

    Google Scholar 

  36. ScheURLe, J. Some aspects of successive bifurcations in the Couette-Taylor problem. Fields Inst. Comm. 5 (1996), 335–345.

    MathSciNet  Google Scholar 

  37. Schwarz, G. W. Smooth function invariant under the action of a compact Lie group. Topology 14(1975), 63–68.

    Article  MathSciNet  MATH  Google Scholar 

  38. Schwarz, G. W. Lifting smooth homotopies of orbit spaces. Publ. Math. IHES 51 (1980), 37–135.

    MATH  Google Scholar 

  39. Slodowy, P. Der Scheibensatz für algebraische Transformationsgruppen. In Algebraische Transformationsgruppen und Invariantentheorie, H. Kraft, P. Slodowy, and T. A. Springer (Eds.), DMV Seminar 13, Birkhäuser Verlag, Basel, Boston, Berlin, 1989, 89–113.

    Chapter  Google Scholar 

  40. Sturmfels, B. Algorithms in Invariant Theory. Springer-Verlag, Wien-New York, 1993.

    MATH  Google Scholar 

  41. Teman, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, vol. 68 of Appl. Math. Sci. Springer-Verlag, New York, 1988.

    Google Scholar 

  42. Weyl, H. The Classical Groups, 2nd ed. Princeton University Press, 1946.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rumberger, M., Scheurle, J. (2001). The Orbit Space Method: Theory and Application. In: Fiedler, B. (eds) Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56589-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56589-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62524-4

  • Online ISBN: 978-3-642-56589-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics