Advertisement

Cascades of Homoclinic Doubling Bifurcations

  • Ale Jan Homburg
Conference paper

Abstract

We present an overview of the theory of homoclinic doubling cascades, describing bifurcation theory and discussing universal scaling properties obtained from a renormalization theory.

Keywords

Vector Field Periodic Orbit Bifurcation Diagram Unstable Manifold Parameter Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AllYor84]
    K.T. Alligood, J.A. Yorke, Families of periodic orbits: virtual periods and global continuability, Journ. Diff. Eq. 55 (1984), 59–71.MathSciNetMATHCrossRefGoogle Scholar
  2. [CouTre78]
    P. Coullet, C. Tresser, Itérations d’endomorphismes et groupe de renormalisation, J. de Physique C5 (1978), 25.Google Scholar
  3. [Fei78]
    M.J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, Journ. Stat. Phys 19 (1978), 669–706.MathSciNetCrossRefGoogle Scholar
  4. [Fie96]
    B. Fiedler, Global pathfollowing of homoclinic orbits in two-parameter flows, in Pitman Res. Notes Math., Vol. 352, Longman, 1996, pp. 79–146.Google Scholar
  5. [HirPugShu77]
    M. Hirsch, C. Pugh, M. Shub, Invariant Manifolds, Lect. Notes Math., Vol. 583, 1977, Springer-Verlag.Google Scholar
  6. [HomKokKru94]
    A.J. Homburg, H. Kokubu, M. Krupa, The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit, Ergod. Th. & Dynam. Sys. 14 (1994), 667–693.MathSciNetMATHCrossRefGoogle Scholar
  7. [Hom96]
    A.J. Homburg, Global Aspects of Homoclinic Bifurcations of Vector Fields, Memoirs A.M.S., Vol. 578, A.M.S., 1996.Google Scholar
  8. [HomKokNau98]
    A.J. Homburg, H. Kokubu, V. Naudot, Homoclinic doubling cascades, preprint (1998).Google Scholar
  9. [HomKra98]
    A.J. Homburg, B. Krauskopf, Resonant homoclinic flip bifurcations, to appear in J. Dynamics Differential Equations.Google Scholar
  10. [HomYou99]
    A.J. Homburg, T. Young, Universal scalings in homoclinic doubling cascades, preprint (1999).Google Scholar
  11. [KisKokOka93]
    M. Kisaka, H. Kokubu, H. Oka, Bifurcations to iV-homoclinic orbits and TV-periodic orbits in vector fields, J. Dynamics Differential Equations 5 (1993), 305–357.MathSciNetMATHCrossRefGoogle Scholar
  12. [KokKomOka96]
    H. Kokubu, M. Komuro, H. Oka, Multiple homoclinic bifurcations from orbit-flip. I. Successive homoclinic doublings. Int. Journ. Bif. Chaos 6 (1996), 833–850.MathSciNetMATHCrossRefGoogle Scholar
  13. [LuzVia99]
    S. Luzatto, M. Viana, Positive Lyapunov Exponents for Lorenz-like families with criticalities, to appear in Astérisque.Google Scholar
  14. [LuzTuc99]
    S. Luzatto, W. Tucker, Non-uniformly expanding dynamics for maps with critical points and singularities, to appear in Publ. Math. I.H.E.S.Google Scholar
  15. [LyuPikZak89]
    D.V. Lyubimov, A.S. Pikovsky, M.A. Zaks, Universal scenarios of transitions to chaos via homoclinic bifurcations, Sov. Sci. Rev., Sect. C, Math. Phys. Rev. 8 (1989), 221–292.MathSciNetMATHGoogle Scholar
  16. [Nau96]
    V. Naudot, Strange attractor in the unfolding of an inclination-flip homoclinic orbit, Ergod. Th. & Dynam. Syst. 16 (1996), 1071–1086.MathSciNetMATHCrossRefGoogle Scholar
  17. [OldKraCha00]
    B.E. Oldeman, B. Krauskopf, A.R. Champneys, Death of perioddoublings: locating the homoclinic-doubling cascade, to appear in Physica D.Google Scholar
  18. [San97]
    B. Sandstede, Constructing dynamical systems having homoclinic bifurcation points of codimension two, J. Dynamics Differential Equations 9 (1997), 269–288.MathSciNetMATHCrossRefGoogle Scholar
  19. [San99]
    B. Sandstede, Center manifolds for homoclinic solutions, J. Dynamics Differential Equations 12, (2000), 449–510.MathSciNetMATHCrossRefGoogle Scholar
  20. [Shi93]
    A.L. Shil’nikov, On bifurcations of the Lorenz attractor in the Shimizu-Morioka model, Physica D 62 (1993), 338–346.MathSciNetCrossRefGoogle Scholar
  21. [Yan87]
    E. Yanagida, Branching of double pulse solutions from single pulse solutions in nerve axon equations, Journ. Diff. Eq. 66 (1987), 243–262.MathSciNetMATHCrossRefGoogle Scholar
  22. [YorA1183]
    J.A. Yorke, K.T. Alligood, Cascades of period doubling bifurcations: a prerequisite for horseshoes, Bull. A.M.S. 9 (1983), 319–322.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Ale Jan Homburg
    • 1
  1. 1.KdV InstituteUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations