Implementing Luby’s Algorithm on the CRAY T3E

  • Jürgen Gross
  • Markus Lohrey
Conference paper


We present an implementation of Luby’s algorithm for the calculation of maximal independent sets in graphs on the Cray T3E.


Parallel Algorithm Sequential Algorithm Theoretical Computer Science Extended Graph Procedure Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the maximal independent set problem. Journal of Algorithms, 7:567–583, 1986.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    A. E. Andreev, A. E. F. Clementi, and J. D. P. Rolim. A new general derandomization method. Journal of the ACM, 45(1):179–213, January 1998.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    B. Chor and O. Goldreich. On the power of two-point sampling. Journal of Complexity, 5:96–106, 1989.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    M. Chrobak and M. Yung. Fast algorithms for edge—coloring planar graphs. Journal of Algorithms, 10:35–51, 1989.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    M. T. Goodrich and E. A. Ramos. Bounded-independence derandomization of geometrie partitioning with applications to parallel fixed-dimensional linear programming. GEOMETRY: Discrete & Computational Geometry, 18, 1997.Google Scholar
  6. 6.
    K. Gopalakrishnan and D. R. Stinson. Derandomization. In C. J. Colbourn and J. H. Dinitz (Editors), The CRC Handbook of Combinatorial Designs, pages 558–560. CRC Press, 1996.Google Scholar
  7. 7.
    J. Gross. Eine Implementierung von Lubys algorithmus für die Cray T3E. Diplomarbeit 1790, Univ. Stuttgart, Fakultät Informatik, 1999. 62 pages.Google Scholar
  8. 8.
    J. JáJá. Parallel Algorithms. Addison Wesley, 1992.Google Scholar
  9. 9.
    R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent set problem. Journal of the ACM, 32(4):762–773, 1985.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing, 12:28–35, 1983.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    D. Kozen. The Design and Analysis of Algorithms. Springer, 1992.Google Scholar
  12. 12.
    R. J. Lipton and R. E. Miller. A batching method for coloring a planar graph. Information Processing Letters, 7:185–188, 1978.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing, 15:1036–1053, 1986.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    W. Oed. Technische Dokumentation, Cray Reserach, Massiv-paralleles Prozessorsystem CRAY T3E. Technical report, 1996.Google Scholar
  15. 15.
    G. E. Pantziou, P. G. Spirakis, and C. D. Zaroliagis. Fast parallel approximations of the maximum weighted cut problem through derandomization. FST & TCS: Foundations of Software Technology and Theoretical Computer Science, 9, 1989.Google Scholar
  16. 16.
    C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.Google Scholar
  17. 17.
    L. Valiant. Parallel computations. In 7th IBM Symposium on Mathematical Foundations of Computer Science, pages 173–189, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jürgen Gross
    • 1
  • Markus Lohrey
    • 1
  1. 1.Institut für InformatikUniversität StuttgartStuttgartGermany

Personalised recommendations