Skip to main content

Correlation Analysis of Permixed Turbulent Flames Using Direct Numerical Simulations

  • Conference paper
High Performance Computing in Science and Engineering 2000

Abstract

In this work direct numerical simulations of premixed turbulent flames are performed using both, detailed chemical kinetics and detailed transport models. Accounting for all turbulent as well as chemical time scales allows a detailed investigation of the coupling of the chemical kinetics with the turbulent flow field. The results of the DNS are analyzed using a correlation analysis technique which allows to extract information on the chemical kinetics which can then be used to improve submodels for turbulent flame calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Baum. Direct Numerical Simulation — A tool to study turbulent reacting flows, volume V of Annual Reviews of Computational Physics. World Scientific Publishing Company, 1997.

    Google Scholar 

  2. D. Thévenin, J. C. Rolon, P. H. Renard, D. W. Kendrick, D. Veynante, and S. Candel. In 26th Symposium (International) on Combustion, pages 1079–1086. The Combustion Institute, Pittsburgh, PA, 1996.

    Google Scholar 

  3. D. Thévenin, F. Behrendt, U. Maas, and J. Warnatz. Comput. Fluids, 25,5:485–496, 1996.

    Article  MATH  Google Scholar 

  4. D. Thévenin, E. van Kalmthout, and S. Candel. In J. P. Chollet, P. R. Voke, and L. Kleiser, editors, Direct and Large Eddy Simulation II, pages 343–354. Kluwer Academic Publishers, 1997.

    Google Scholar 

  5. T. Poinsot. In 26th Symposium (International) on Combustion, pages 219–232. The Combustion Institute, Pittsburgh, PA, 1996.

    Google Scholar 

  6. T. Poinsot, S. Candel, and A. Trouve. Applications of direct numerical simulation to premixed turbulent combustion. Prog. Energy Combust. Sci., 21:531–576, 1996.

    Article  Google Scholar 

  7. U. Maas and S. B. Pope. Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combustion and Flame, 88:239–264, 1992.

    Article  Google Scholar 

  8. U. Maas and D. Thevenin. Correlation analysis of direct numerical simulation data of turbulent non-premixed flames. In 27th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA, 1998.

    Google Scholar 

  9. T. Poinsot and S. Lele. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys., 101:104–129, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Baum. Etude de l’allumage et de la structure des flammes turbulentes. PhD thesis, Laboratoire d’Energetique Moleculaire et Macroscopique, Combustion (E.M2.C) du C.N.R.S. et de l’ECP, Paris, 1994.

    Google Scholar 

  11. S. Lele. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103:16–42, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. J. Kee, J. A. Miller, and T. H. Jefferson. Chemkin: A general purpose, problem independent, transportable, fortran chemical kinetics code package. Technical Report SAND80-8003, Sandia Tech. Rep., 1980.

    Google Scholar 

  13. R. J. Kee, J. Warnatz, and J. A. Miller. A fortran computer code package for the evaluation of gas phase viscosities, conductivities, and diffusion coefficients. Technical Report SAND83-8209, Sandia Tech. Rep., 1983.

    Google Scholar 

  14. J. O. Hinze. Turbulence, 2nd ed. McGraw Hill Book Company, 1975.

    Google Scholar 

  15. R. J. Kee, J. F. Crcar, M. Smooke, and J. A. Miller. A fortran program for modelling steady laminar one-dimensional premixed flames. Technical Report SAND85-8240, Sandia Tech. Rep., 1985.

    Google Scholar 

  16. U. Maas and S. B. Pope. Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. In 24th Symposium (International) on Combustion, page 103. The Combustion Institute, Pittsburgh, PA, 1992.

    Google Scholar 

  17. S. B. Pope. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci., 11:119–192, 1985.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsai, W., Schmidt, D., Maas, U. (2001). Correlation Analysis of Permixed Turbulent Flames Using Direct Numerical Simulations. In: Krause, E., Jäger, W. (eds) High Performance Computing in Science and Engineering 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56548-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56548-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62513-8

  • Online ISBN: 978-3-642-56548-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics