Skip to main content

Quantum Chemical Calculations of Transition Metal Complexes

  • Conference paper
High Performance Computing in Science and Engineering 2000
  • 200 Accesses

Abstract

Transition metal complexes show a wide variety of chemical reactions. To gain insight into the bonding situation of these complexes and the transition states involved in these reactions is not only crucial for understanding the underlying principles, but even more for finding new reaction pathways or optimising reaction conditions in chemical industry. Where experiments fail to obtain the needful results, modern quantum chemical approaches can be utilised to investigate chemical systems and predict their properties. This is achallenging task for computational chemists and the necessary calculations, particularly at high levels of theory, are demanding in computational resources. Such calculations have been carried out in order to predict geometries, bond energies, and Lewis basicity of various transition metal complexes. The following chapters give an overview about the research of our group using computational resources of the HLR Stuttgart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nugent W.A., Mayer J.M. Metal-ligand multiple bonds 1988, Wiley, New York.

    Google Scholar 

  2. a) Dehnicke K, Strähle J., Chem. Rev. 1993, 93, 981. b) Dehnicke K, Strähle J., Angew. Chem. 1993, 104, 978; Angew. Chem. Int. Ed. Engl., 31, 955. c) Dehnicke K, Strähle J., Angew. Chem. 1981, 93, 451; Angew. Chem. Int. Ed. Engl., 20, 413.

    Article  Google Scholar 

  3. Jonas V., Frenking G., Reetz M.T., J. Am. Chem. Soc., 1995, 116, 8741.

    Article  Google Scholar 

  4. Gal J.-F., Maria P.C., Prog. Phys. Drg. Chem. 1990, 17, 159.

    Article  Google Scholar 

  5. a) Ritter S., Abram U., Z. Anorg. Allg. Chem. 1994, 620, 1443. b) Ritter S., Abram U., Inorg. Chim. Acta 1995, 231, 245. c) Ritter S., Hbener R., Abram U., JCS Chem. Commun. 1995, 2047. d) Ritter S., Abram U., Z. Anorg. Allg. Chem. 1996, 622, 965.

    Article  Google Scholar 

  6. Dapprich S., Frenking G., J. Phys. Chem. 1995, 99, 9352.

    Article  Google Scholar 

  7. Reed A.E., Curtiss L.A., Weinhold F., Chem. Rev. 1988, 88, 899.

    Article  Google Scholar 

  8. a) Becke A.D., J. Chem. Phys. 1993, 96, 5648. b) Stevens P.J., Devlin J.F., Chablowski C.F., Frisch M.J., J. Phys. Chem. 1994, 98, 11623.

    Article  Google Scholar 

  9. a) Møller C., Plesset M.S., Phys. Rev. 1934, 46, 618. b) Binkley J.S., Pople J.A., Int. J. Quantum Chem. 1975, 9S, 229.

    Article  MATH  Google Scholar 

  10. 10. Frenking G., Antes I., Böhme M., Dapprich S., Ehlers A.W., Jonas J., Neuhaus A., Otto M., Stegmann R., Veldkamp A., Vyboishchikow S.F., In: Lipkowitz K.B., Boyd D.B. (eds) Reviews in computational chemistry, 1996, Vol. 8, VCH, New York, pp 63–144.

    Chapter  Google Scholar 

  11. Hay P.J., Wadt W.R., J. Chem. Phys. 1985, 82, 299.

    Article  Google Scholar 

  12. a) Ditchfield R., Hehre W.J., Pople J.A., J. Chem. Phys. 1971, 54, 724. b) Ditchfield R., Hehre W.J., Pople J.A., J. Chem. Phys. 1972, 56, 2257. c) Hariharan P.C., Pople J.A., Mol. Phys. 1974, 27, 209. d) Hariharan P.C., Pople J.A., Theor. Chim. Acta 1973, 28, 213. e) Gordon M.S., Chem. Phys. Lett. 1980, 76, 163.

    Article  Google Scholar 

  13. Bergner A., Dolg M., Küchle W., Stoll H., Preu H., Mol. Phys. 1993, 80, 1431.

    Article  Google Scholar 

  14. a) Pople J.A., Krishnan R., Schlegel K.B., Binkley J.S., Int. J. Quantum Chem. 1978, 14, 545. b) Bartlett R.J., Purvis G.D., Int. J. Quantum Chem. 1978, 14, 561. c) Bartlett R.J., Purvis G.D., J. Che. Phys. 1982, 76, 1910. d) Bartlett R.J., Purvis G.D., J. Chem. Phys. 1987, 86, 7041. e) Pople J.A., Head-Gordon M., Raghavachari K., J. Chem. Phys. 1987, 87, 5968.

    Article  Google Scholar 

  15. Frisch M.J., Trucks G.W., Schlegel K.B., Gill P.M.W., Johnson B.G., Robb M.A., Cheeseman J.R., Keith T.A., Petersson G.A., Montgomery J.A., Raghavachari K, Al-Laham N.A., Zakrzewski V.G., Ortiz J.V., Foresman J.B., Cioslowski J., Stefanov B.B., Nanayakkara A., Challacombe M., Peng C.Y., Ayala P.Y., Chen W., Wong M.W., Andres J.L., Replogle E.S., Gomberts R., Martin R.L., Fox D.J., Binkley J.S., Dafrees D.J., Baker I., Stewart J.J.P., Head-Gordon M., Always U., Gonzalez C., Pople J.A., Gaussian 94 1995, Pittsburgh, Pa.

    Google Scholar 

  16. Dapprich S., Frenking G., CDA 2.1 1994, The program is available via anonymous ftp server: ftp.chemie.uni-marburg.de/pub/cda

    Google Scholar 

  17. Forsellini E., Casellato U., Graziani R., Magon L., Acta Cryst. Allogr. Sect. B 1982, 38, 3081.

    Article  Google Scholar 

  18. Frenking G., Fau S., Marchand C.M., Grützmacher H., J. Am. Chem. Soc. 1997, 119, 6648.

    Article  Google Scholar 

  19. a) Pidun U., Boehme C., Frenking G., Angew. Chem. 1996, 108, 3008; Angew. Chem. Int. Ed. Engl., 35, 2817. b) Dapprich S., Ujaque G., Maseras F., Lledos A., Musaev D.G., Morokuma K., J. Am. Chem. Soc. 1996, 118, 11660. c) Torrent M., Deng L., Duran M., Sola M., Ziegler T., Organometallics 1997, 16, 13. d) Del Monte A.J., Haller J., Houk K.N., Sharpless K.B., Singleton D.A., Strassner T., Thomas A.A., J. Am. Chem. Soc. 1997, 119, 9907.

    Google Scholar 

  20. a) Göbel T., Sharpless K.B., Angew. Chem. 1993, 105, 1417; Angew. Chem. Int. Ed. Engl., 32, 1329 and furt her references therein. b) Corey E.J., Noe M., Sarshar S.J., J. Am. Chem. Soc. 1993, 115, 3828 and further referenees cited therein.

    Article  Google Scholar 

  21. Hentges S.G., Sharpless K.B., J. Am. Chem. Soc. 1980, 102, 4263.

    Article  Google Scholar 

  22. a) Gable K.P., Phan T.N., J. Am. Chem. Soc. 1994, 116, 833. b) Gable K.P., Juliette J.J.J., J. Am. Chem. Soc. 1995, 117, 955. c) Gable K.P., Juliette J.J.J., J. Am. Chem. Soc. 1996, 188, 2625.

    Article  Google Scholar 

  23. Haller J., Berno B.R., Houk K.N., J. Am. Chem. Soc. 1998, 120, 6468.

    Article  Google Scholar 

  24. Pietsch M.A., Russo T.V., Murphy R.B., Martin R.L., Rappe A.K., Organometallics 1998, 17, 2716.

    Article  Google Scholar 

  25. a) Binkley J.S., Pople J.A., Hehre W.J., J. Am. Chem. Soc. 1980, 102, 939. b) Hehre W.J., Ditchfield R., Pople J.A., J. Chem. Phys. 1972, 56, 2257.

    Article  Google Scholar 

  26. Ehlers A.W., Böhme M., Dapprich S., Gobbi A., Höllwarth A., Jonas V., Köhler K.F., Stegmann R., Veldkamp A., Frenking G., Chem. Phys. Lett. 1993, 208, 111.

    Article  Google Scholar 

  27. Clark T., Chandrasekhar J., Spitznagel G.W., Schleyer P.v.R., J. Comp. Chem. 1983, 4, 294.

    Article  Google Scholar 

  28. a) Reppe J.W., Reindl. E., Liebigs Ann. Chem. 1953, 582, 121. b) Frazier C.C., Hanes, R.B., King A.D., King R.B., Adv. Chem. Ser. 1979, 173, 94. c) Darensbourgh D.J., Darensbourgh M.Y., Burch R.R., Froelich J.A., Incorvia M.J., Adv. Chem. Ser. 1979, 173, 106. d) Yoshida T., Thorn D.L., Okano T., Ibers J.A., Otsuka S., J. Am. Chem. Soc. 1979, 101, 4212.

    Google Scholar 

  29. a) Ford, P.C., Acc. Chem. Res. 1981, 14, 31 and references therein. b) Yoshida T., Ueda Y., Otsuka S. J. Am. Chem. Soc. 1978, 100, 3942. c) Laine R.M., Thomas W., Carry L., Buttrill S.E., J. Am. Chem. Soc. 1978, 100, 6527. d) Fard P.C., Rinker R.G., Laine RM., Ungermann C., Landis V., Moya S.A., Cohen H., Walker R, Pearson R.G., J. Am. Chem. Soc. 1979, 101, 5922. e) Ford P.C., Rinker R.G., Laine R.M., Ungermann C., Landis V., Moya S.A., Adv. Chem. Ser. 1979, 173, 81. f) Baker E.C., Hendrikssen D.E., Eisenberg R., J. Am. Chem. Soc. 1980, 102, 1020. g) King A.D., King R.B., Yang D.B., Chem. Comm. 1980, 529.

    Article  Google Scholar 

  30. a) Laine R.M., Rinker R.S., Ford, P.C., J. Am. Chem. Soc. 1977, 99, 253. b) Cheng C.-H., Hendricksen D.E., Eisenberg R., J. Am. Chem. Soc. 1977, 99, 2791. c) Kubiak C.P., Eisenberg R., J. Am. Chem. Soc. 1980, 102, 3637. d) Kubiak C.P., Eisenberg R., Woodcock C, Inorg. Chem. 1982, 21, 1, 2119. e) Tominaga K., Sasaki Y., Haghihara K., Watanabe T., Saito M., Chem. Lett. 1994, 1391. f) Kallinen K., Pakkanen T.T., Pakkanen T.A., J. Organomet. Chem. 1997, 547, 319. g) Bryce D.J.F., Dyson P.J., Nicholson B.K., Parker D.G., Polyhedron 1988, 17, 2899. h) Clark R.J.H., Dyson P.J., Humphrey D.G., Johnsson B.F.G., Polyhedron 1988, 17, 2985.

    Article  Google Scholar 

  31. Werner H.-J., Knowles P.J., Universität Stuttgart and University of Birmingham.

    Google Scholar 

  32. a) Kang H., Mauldin C., Cole T., Slegeir W., Petit R., J. Am. Chem. Soc. 1977, 99, 8323. b) Gross D.C., Ford P.C., Inorg. Chem. 1982, 21, 1704.

    Article  Google Scholar 

  33. a) Grice N., Kao S.C., Pettit R., J. Am. Chem. Soc. 1979, 101, 1627. b) Lane K.R., Lee R.E., Sallans L., Squires R.R., J. Am. Chem. Soc. 1984, 106, 5767.

    Google Scholar 

  34. a) Kruck T., Noack M., Chem. Ber. 1964, 97, 1693. b) Darensbourg D.J., Froelich J.A., J. Am. Chem. Soc. 1977, 99, 4726. c) Hieber W., Kruck T., Z. Naturforsch. B 1961, 16, 709. d) Clark H., Dioxin K.R., Jacobs W.J., J. Chem. Comm. 1968, 548. e) Krumholz P., Stettiner H.M.A., J. Am. Chem. Soc. 1949, 71, 3035. f) Sternberg H.W., Markby R, Wender I., J. Am. Chem. Soc. 1957, 79, 6116. g) Hieber W., Vetter H., Z. Anorg. Allg. Chem. 1933, 212, 145.

    Article  Google Scholar 

  35. Sunderlin L.S., Squires R.R., J. Am. Chem. Soc. 1993, 115, 337.

    Article  Google Scholar 

  36. Purvis G.D., Barlett R.J., J. Chem. Phys. 1987, 86, 7041.

    Article  Google Scholar 

  37. Dedieu A., Nakamura S., Nouv. J. Chim. 1984, 8, 317.

    Google Scholar 

  38. a) King A.D., King R.B., Yang D.B., J. Am. Chem. Soc. 1981, 103, 2699. b) Slegeir W.A., Sapienza RS., Rayford R, Lam L., Organometallics 1982, 1, 1728. c) Weiller B.H., Liu J.-P., Grant E.R., J. Am. Chem. Soc. 1985, 197, 1595. d) Ungvary F., Coord. Chem. Rev. 1997, 160, 129.

    Article  Google Scholar 

  39. Miller A.E., Beauchamp J.L., J. Am. Chem. Soc. 1991, 113, 8765.

    Article  Google Scholar 

  40. Pearson R.G., Mauermann H., J. Am. Chem. Soc. 1982 104, 500.

    Article  Google Scholar 

  41. a) Mutterties E.L., Watson P.L., J. Am. Chem. Soc. 1978, 100, 6978. b) Sweaney R.L., J. Am. Chem. Soc. 1981, 103, 2410. c) Pearson R.G., Trans. Am. Crystallogr. Assoc. 1978, 14, 89.

    Article  Google Scholar 

  42. Ford P.C., Rinker R.G., Ungermann C., Laine R.M., Landos V., Moya S.A., J. Am. Chem. Soc. 1978, 100, 4595.

    Article  Google Scholar 

  43. a) Gonzales-Blanco O., Branchadell V. J. Chem. Phys. 1999, 110, 778. b) Lewis K.E., Golden D.M., Smith G.P., J. Am. Chem. Soc. 1982, 104, 55.

    Article  Google Scholar 

  44. a) Driess M., Grützmacher H., Angew. Chem. 1996, 108, 900; Angew. Chem. Int. Ed. Eng., 35, 828. b) Hemme I., Klingbiel U., Adv. Organomet. Chem. 1995, 39, 159. c) Baines K.M., Stibbs W.G., Adv. Organomet. Chem. 1995, 39, 275.

    Article  Google Scholar 

  45. Su J., Li X.-W., Crittendon R.C., Robinson G.H., J. Am. Chem. Soc. 1997, 119, 5471.

    Article  Google Scholar 

  46. a) Cotton F.A., Cowley A.H., Feng X., J. Am. Chem. Soc. 1998, 120, 1795. b) Xie Y., Grev R.S., Gu J., Schaefer H.F.S., Schleyer P.v.R., Su J., Li H.-W., Robinson R.H., J. Am. Chem. Soc. 1998, 120, 3773. c) Su J., Li X.-W., Crittendon C., Campana C.-F., Robinson G.H., Organometallics 1997, 16, 4511. d) Dagani R, Chem. Eng. News 1998, 76, 31. e) Cotton F.A., Feng X., Organometallics 1998, 17, 128.

    Article  Google Scholar 

  47. a) Pidun U., Frenking G., Organometallics 1995, 14, 5325. b) Boehme C., Frenking G., Organometallics 1998, 17, 5801.

    Article  Google Scholar 

  48. Fau S., Frenking G., Mol. Phys. 1999, 96, 519.

    Google Scholar 

  49. a) Dewar M.J.S., Bull. Soc. Chim. Fr. 1951, 18, C79. b) Chatt J., Duncanson L.A., J. Chem. Soc. 1953, 2929.

    Google Scholar 

  50. a) Becke A.D., Phys. Rev. A 1988, 35, 3098. b) Perdew J.P., Phys. Rev. B 1986, 33, 8822.

    Article  Google Scholar 

  51. Fischer R.A., Schulte M.M., Weiss J., Zsolani L., Jacobi A., Huttner G., Frenking G., Boehme C., J. Am. Chem. Soc. 1998, 120, 1237.

    Article  Google Scholar 

  52. Boehme C., Frenking G., J. Am. Chem. Soc. 2000

    Google Scholar 

  53. Goldman A.S., Krogh-Jespersen K, J. Am. Chem. Soc. 1996, 118, 12159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frunzke, J., Frenking, G. (2001). Quantum Chemical Calculations of Transition Metal Complexes. In: Krause, E., Jäger, W. (eds) High Performance Computing in Science and Engineering 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56548-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56548-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62513-8

  • Online ISBN: 978-3-642-56548-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics