Triggered Emission of Single Photons by a Single Molecule

  • C. Brunel
  • P. Tamarat
  • B. Lounis
  • M. Orrit
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 67)


Intense laser light is often represented as a classical Maxwell wave. At low intensities, however, light absorption leads to discrete detection events in photon-counting detectors, or to shot noise in the photodetector current. Although these and many such observations can be interpreted in a semiclassical frame where matter is quantized and waves are still classical, subtler experiments have shown that light, as well as matter, is a quantum object, and that photons have physical reality [1]. The quantum nature of light entails Heisenberg uncertainty relations between two conjugate variables in the harmonic oscillator Hamiltonian of each mode. These so-called quadratures can be the phase and the amplitude of the field. In normal light, e.g. laser light, the noise is equally distributed on the two quadratures. But if the noise on one quadrature is reduced — at the cost of increased noise on the other quadrature — one gets a new state of radiation, called squeezed light [2].


Single Photon Single Molecule Rabi Frequency Photon Pair Rabi Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Loudon, The Quantum Theory of Light (Clarendon, Oxford (England), 1983)Google Scholar
  2. 2.
    D. F. Walls and G. J. Millburn, Quantum Optics (Springer, Berlin, 1994)MATHGoogle Scholar
  3. 3.
    J. G. Rarity, P. R. Tapster, and E. Jakeman, Opt. Commun. 62, 201 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    W. Tittel, G. Ribordy, and N. Gisin, Physics World 11, 41 (1998)Google Scholar
  5. 5.
    P. D. Townsend, J. G. Rarity, and P. R. Tapster, Electron. Lett. 29, 1291 (1993)CrossRefGoogle Scholar
  6. 6.
    H. K. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. A 18, 201 (1978)ADSCrossRefGoogle Scholar
  7. 7.
    F. Diedrich and H. Walther, Phys. Rev. Lett. 58, 203 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    Th. Basché, W. E. Moerner, M. Orrit, and H. Talon, Phys. Rev. Lett. 69, 1516 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    P. Grangier and A. Aspect, Phys. Rev. Lett. 54, 418 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, and C. Fabre, Phys. Rev. Lett. 59, 2555 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    J. Kim, O. Benson, H. Kan, and Y. Yamamoto, Nature 397, 500 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    F. de Martini, G. di Giuseppe, and M. Marrocco, Phys. Rev. Lett. 76, 900 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    Y. R. Shen, The Principles of Nonlinear Optics, p. 399 (Wiley, New York, 1984)Google Scholar
  15. 15.
    C. Brunei, P. Tamarat, B. Lounis, J. Plantard, and M. Orrit, C. R. Acad. Sci. Paris 326, 2679 (1998)Google Scholar
  16. 16.
    C. Brunei, B. Lounis, P. Tamarat, and M. Orrit, Phys. Rev. Lett. 83, 2722 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions (Wiley, New York, 1992)Google Scholar
  18. 18.
    P. Tamarat, F. Jelezko, C. Brunei, A. Maali, B. Lounis, and M. Orrit, Chem. Phys. 245, 121 (1999)CrossRefGoogle Scholar
  19. 19.
    C. Brunei, P. Tamarat, B. Lounis, J. C. Woehl, and M. Orrit, J. Phys. Chem. 103, 2429 (1999)CrossRefGoogle Scholar
  20. 20.
    Y. Durand, J. C. Woehl, B. Viellerobe, W. Göhde, and M. Orrit, Rev. Sci. Instr. 70, 1318 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    P. Tamarat, B. Lounis, J. Bernard, M. Orrit, S. Kummer, R. Kettner, S. Mais, and T. Basché, Phys. Rev. Lett. 75, 1514 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    B. Lounis, F. Jelezko, and M. Orrit, Phys. Rev. Lett. 78, 3673 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    Ch. Brunei, B. Lounis, Ph. Tamarat, and M. Orrit, Phys. Rev. Lett. 81 (1998) 2679.ADSCrossRefGoogle Scholar
  24. 24.
    E. Clar, Polycyclic Aromatic Hydrocarbons (Academic Press/Springer, New York, 1995)Google Scholar
  25. 25.
    K. Moelmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    S. Reynaud, Ann. Phys. (Paris) 8, 351 (1983)Google Scholar
  27. 27.
    H. Talon, Thèse de Doctorat, Université Bordeaux I (unpublished)Google Scholar
  28. 28.
    A.-M. Boiron, B. Lounis, and M. Orrit, J. Chem. Phys. 105, 3969 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    W. P. Ambrose, P. M. Goodwin, J. Enderlein, D. J. Semin, J. C. Martin, and R. A. Keller, Chem. Phys. Lett. 269, 365 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    U. Mets, J. Widengren, and R. Rigler, Chem. Phys. 218, 191 (1997)CrossRefGoogle Scholar
  31. 31.
    P. Goy, J.-M. Raimond, M. Gross, and S. Haroche, Phys. Rev. Lett. 50, 1903 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    J.-M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, Phys. Rev. Lett. 81, 1110 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • C. Brunel
    • 1
  • P. Tamarat
    • 1
  • B. Lounis
    • 1
  • M. Orrit
    • 2
  1. 1.C.P.M.O.HCNRS et Université Bordeaux I 351, Cours de la LibérationTalence CedexFrance
  2. 2.Huygens LaboratoryUniversiteit LeidenNL—2300 RA LeidenThe Netherlands

Personalised recommendations