The Cosmic Star-Formation History: The UV Finds Most

  • Kurt Adelberger
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 88)


The assigned subtitle of this talk was “The UV Takes it All!” The absurdity of that subtitle must have been obvious to many conference participants when they first read the program, and now, after four days of talks, I hope it is obvious to everyone here. The UV cannot possibly “take all” of the cosmic star-formation history. Data from low and high redshift alike overwhelmingly show that rapidly star-forming galaxies emit the bulk of their bolometric luminosities in the far-infrared, not the UV. Some extremely luminous high-redshift galaxies have not been detected in the UV at all (see, e.g., Hughes’ and Blain’s contributions to these proceedings); many others dominate relatively short 850 μm exposures but are barely detected in even the deepest (rest-frame) UV images. I was asked by the organizers to make a case for studying the distant universe in the restframe UV, and I will; but I cannot pretend that UV surveys are the best way to study all star-forming galaxies at high redshift. Some fraction of the stars in the universe formed in extremely dusty galaxies that are best studied in the infrared. Nevertheless the available data—even IR data!—suggest that most stars formed in objects that are easiest to detect in the rest-frame ultraviolet, and so I have modified the subtitle of this talk to a statement I am prepared to defend.


Star Formation High Redshift Local Universe Bolometric Luminosity Faint Galaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.L. Adelberger, C.C. Steidel: ApJ 544, 218 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    H. Aussel, C.J. Cesarsky, D. Elbaz, J.L. Starck: A&A 342, 313 (1999)ADSGoogle Scholar
  3. 3.
    A.J. Barger, L.L. Cowie, D.B. Sanders: ApJ 518, L5 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    A.J. Barger, L.L. Cowie, E. Richards: AJ 119, 2092 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    A.W. Blain, J.-P. Kneib, R.J. Ivison, I. Smail: ApJ 512, L87 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    S.C. Chapman et al.: MNRAS 319, 318 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    S.C. Chapman, E. Richards, G. Lewis, G. Wilson, A. Barger: ApJ Let., submittedGoogle Scholar
  8. 8.
    S.C. Chapman et al. in preparationGoogle Scholar
  9. 9.
    A. Dey, J.R. Graham, R.J. Ivison, I. Smail, G.S. Wright, M.C. Liu: ApJ 519, 610 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    D.T. Frayer et al.: ApJ 514, L13 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    D.T. Frayer, I. Smail, R.J. Ivison, N.Z. Scoville: AJ 120, 1668 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    J.D. Goldader et al. in preparationGoogle Scholar
  13. 13.
    R.J. Ivison et al.: MNRAS 315, 209 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    G.R. Meurer, T.M. Heckman, D. Calzetti: ApJ 521, 64 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    D.B. Sanders, I.F. Mirabel: ARAA 34 749 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    I. Smail, R.J. Ivison, F.N. Owen, A.W. Blain, J.-P. Kneib: ApJ 528, 612 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    C.O Steidel, K.L. Adelberger, M. Giavalisco, M. Dickinson, M. Pettini: ApJ 519, 1 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    N. Trentham, J. Kormendy, D.B. Sanders: AJ 117, 2152 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Kurt Adelberger
    • 1
  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA

Personalised recommendations