The Genesis of Super Star Clusters as Self-Gravitating HII Regions

  • Jonathan C. Tan
  • Christopher F. McKee
Part of the Springer Proceedings in Physics book series (SPPHY, volume 88)


We examine the effects of ionization, radiation pressure and main sequence winds from massive stars on self-gravitating, clumpy molecular clouds, thereby modeling the formation and pre-supernova feedback of massive star clusters. We find the process of “turbulent mass loading” is effective in confining HII regions. Extrapolating typical Galactic high-mass star forming regions to greater initial gas cloud masses and assuming steady star formation rates, we determine the timescales for cloud disruption. We find that a dense (n c ≃ 2 x 105 cm−3) cloud with initial mass M c ≃ 4 x 105 M is able to form ~ 2 x 105 M of stars ( 50% efficiency) before feedback disperses the gas after ~ 3 Myr. This mass and age are typical of young, optically visible super star clusters (SSCs). The high efficiency permits the creation of a bound stellar system.


Star Formation Massive Star Star Cluster Star Formation Rate Initial Mass Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.A. Baldwin, et al.: ApJ, 374, 580 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    F. Bertoldi: ApJ, 346, 735 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    F. Bertoldi, C.F. McKee: ApJ, 354, 529 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    B. Brandl, et al.: In: From Darkness to Light, ed. by T. Montmerle, Ph. André (ASP conf. ser., 2000)Google Scholar
  5. 5.
    J.M. Carpenter: AJ, in press, (2000)Google Scholar
  6. 6.
    J.E. Dyson, R.J.R. Williams, M.P. Redman: MNRAS, 277, 700 (1995)ADSGoogle Scholar
  7. 7.
    A.M. Gilbert, et al.: ApJL, 533, L57 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    L.C. Ho, A.V. Filippenko: ApJL, 466, L83 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    L.C. Ho, A.V. Filippenko: ApJ, 472, 600 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    H.A. Kobulnicky, K.E. Johnson: ApJ, 527, 154 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    C.J. Lada, M. Margulis, D. Dearborn: ApJ 285, 141 (1984)ADSCrossRefGoogle Scholar
  12. 12.
    E.A. Lada, K.M. Strom, P.C. Myers: 1993, In: Protostars and Planets III, ed. by E.H. Levy, J.L Lunine (Univ. Arizona Press, Tucson 1993) p245Google Scholar
  13. 13.
    C. Leitherer, et al.: ApJS, 123, 3 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    P. Massey, D.A. Hunter: ApJ, 493, 180 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    S. Mengel, et al.: preprint, astro-ph/0010238 (2000)Google Scholar
  16. 16.
    C.F. McKee: ApJ, 345, 782 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    C.F. McKee, D. Van Buren, B. Lazareff: ApJ, 278, L115 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    R. Plume, et al.: ApJ, 476, 730 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    A. Sternberg: ApJ, 506, 721 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    J.C. Tan, J. Silk, C. Balland: ApJ, 522, 579 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    J.C. Tan, C.F. McKee: in preparation (2001)Google Scholar
  22. 22.
    B.C. Whitmore, et al.: AJ, 118, 1551 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    C.D. Wilson, N. Scoville, S.C. Madden, V. Charmandaris: ApJ, 542, 120 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Q. Zhang, S.M. Fall: ApJL, 527, L81 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jonathan C. Tan
    • 1
  • Christopher F. McKee
    • 2
  1. 1.Dept. of AstronomyUC BerkeleyBerkeleyUSA
  2. 2.Depts. of Physics and of AstronomyUC BerkeleyBerkeleyUSA

Personalised recommendations