Skip to main content

Evolution der Nervensysteme und der Sinnesorgane

  • Chapter
Book cover Neurowissenschaft

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

Die von Wallace und Darwin begründete Abstammungslehre (Deszendenz- und Selektionstheorie) entwickelte sich im Verlauf des 20. Jahrhunderts zum sogenannten Neodarwinismus, der ältere Disziplinen der Biologie wie Paläontologie und Morphologie mit moderneren wie Populationsgenetik vereinigte. Kernpunkt des Neodarwinismus ist der Gradualismus, der voraussetzt, daß Evolution durch zufällige, kleine Veränderungen des Erbgutes (Mutation und Rekombination) erfolgt und kumulativ zu großen Abwandlungen bei Organismen führt, womit jede vergangene und gegenwärtige Erscheinungsform des Lebendigen erklärt wird. Richtungsgebend ist hierbei die natürliche Auslese der Umwelt (Selektion), deren Resultat als Adaptation bezeichnet wird. Dieses Paradigma stellt die bis heute allgemein akzeptierte Evolutionstheorie dar, obwohl immer schon diskutiert wurde, ob nicht große Veränderungen in der Evolution (Makroevolution) durch zusätzliche, nicht-adaptive Prozesse (z.B. aufgrund „interner Dynamik“) herbeigeführt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ali MA (1987) Nervous systems in invertebrates. Plenum, New York (NATO ASI Series, series A: Life sciences, vol 141)

    Book  Google Scholar 

  2. Arbas EA, Meinertzhagen IA, Shaw SR (1991) Evolution in nervous systems. Annu Rev Neurosci 14:9–38

    Article  PubMed  CAS  Google Scholar 

  3. Aliens Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man. Hafner, New York

    Google Scholar 

  4. Ax P (1984) Das phylogenetische System. Fischer, Stuttgart

    Google Scholar 

  5. Barth FG (1985) Slit sensilla and the measurement of cuticular strains. In: Barth FG (ed) Neurobiology of arachnids. Springer, New York

    Chapter  Google Scholar 

  6. Boncinelli E, Gulisano M, Spada F, Broccoli V (1995) Emx and Otx gene expression in the Developing Mouse Brain. In: Bock GR, Cardew G (eds): Development of the cerebral cortex. Ciba Foundation Symposium 193. J. Wiley & Sons, Chichester

    Google Scholar 

  7. Braford MR, Northcutt RG (1983) Organization of the diencephalon and pretectum of the ray-finned fishes. In: Davis RE, Northcutt RG (eds) Higher brain areas and functions. University of Michigan Press, Ann Arbor (Fish neurobiology, vol 2)

    Google Scholar 

  8. Breidbach O (1992) Ist das Arthropoden-Hirn zweimal entstanden? Natur Museum 122:301–310

    Google Scholar 

  9. Budelmann B, Bleckmann H (1988) A lateral line analogue in cephalopods: water waves generate microphonic potentials in the epidermal head lines of Sepia and Lolliguncula. J Comp Physiol [A] 164:1–5

    Article  CAS  Google Scholar 

  10. Bullock TH, Heiligenberg W (1986) Electroreception. Wiley, New York

    Google Scholar 

  11. Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates. Freeman, San Francisco

    Google Scholar 

  12. Coombs S, Görner P, Münz H (eds) (1989) The mechanosensory lateral line: neurobiology and evolution. Springer, New York

    Google Scholar 

  13. Deacon TW (1990) Rethinking mammalian brain evolution. Am Zool 30:629–705

    Google Scholar 

  14. Ebbesson SOE (1980) The panellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213:179–212

    PubMed  CAS  Google Scholar 

  15. Ehlers U (1985) Das phylogenetische System der Plathelminthes. Fischer, Stuttgart

    Google Scholar 

  16. Foelix RF (1992) Biologie der Spinnen. Thieme, Stuttgart

    Google Scholar 

  17. Garstang W (1928) The morphology of the Tunicata and its bearing on the phylogeny of the Chordata. Q J Microsc Sci 72:51–187

    Google Scholar 

  18. Gehring W (1987) Homeo boxes in the study of development. Science 236: 1245–1252

    Article  PubMed  CAS  Google Scholar 

  19. Grimmelikhuijzen CJP, Leviev I, Carstensen K (1996) Peptides in the nervous system of cnidarians: Structure, function, and biosynthesis. Int. Rev. Cytology 167:37–89

    Article  CAS  Google Scholar 

  20. Grundfest H (1959) Evolution of conduction in the nervous system. In: Bass AD (ed) Evolution of nervous control. American Association for the Advancement of Science, Washington

    Google Scholar 

  21. Gupta AP (1987) Arthropod brain. Its evolution, development, structure, and functions. Wiley, New York

    Google Scholar 

  22. Hennig W (1966/1979) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  23. Hennig W (1972) Wirbellose II. Deutsch, Frankfurt (Taschenbuch der speziellen Zoologie, Teil 2)

    Google Scholar 

  24. Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, Chicago

    Google Scholar 

  25. Janvier P (1981) The phylogeny of the Craniata, with particular reference to the significance of fossil „agnathans“. J Vert Paleont 1:121–159

    Google Scholar 

  26. Jefferies RPS (1986) The ancestry of the vertebrates. Dorset, Dorchester (British Museum, Natural History)

    Google Scholar 

  27. Jones EG (1985) The thalamus. Plenum, New York

    Book  Google Scholar 

  28. Jones EG, Peters A (eds) (1990) Comparative structure and evolution of cerbral cortex, part I. Plenum, New York (Cerebral cortex, vol 8A)

    Google Scholar 

  29. Kastner A (1969) Wirbellose, 1. Teil. Fischer, Stuttgart (Lehrbuch der speziellen Zoologie, Bd 1)

    Google Scholar 

  30. Kandel ER, Schwartz JH, Jessell TM (1991) Principles of neural science. Elsevier, New York

    Google Scholar 

  31. Karten HJ (1969) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann N Y Acad Sci 167:161–185

    Article  Google Scholar 

  32. Koopowitz H (1986) On the evolution of central nervous systems: implications from poly clad turbellarian neurobiology. Hydrobiologia 132:79–87

    Article  Google Scholar 

  33. Lacalli T (1996) Landmarks and subdomains in the larval brain of Branchiostoma: vertebrate homologs and invertebrate antecendents. Israel J. Zoology 42:131–146

    Google Scholar 

  34. Larsell O (1967) The comparative anatomy and histology of the cerebellum from myxinoids through birds. University of Minnesota Press, Minneapolis

    Google Scholar 

  35. Lauder GV, Liem KF (1983) The evolution and interrelationships of the actinopterygian fishes. Bull Mus Comp Zool 150

    Google Scholar 

  36. Lauterbach KE (1989) Das Pan-Monophylum — Ein Hilfmittel fü die Praxis der phylogenetischen Systematik. Zool Anz 223:139–156

    Google Scholar 

  37. Le Roith D, Roth J (1984) Vertebrate hormones and neuropeptides in microbes: evolutionary origin of intercellular communication. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 8. Raven, New York

    Google Scholar 

  38. Lentz TL (1968) Primitive nervous systems. Yale University Press, New Haven

    Google Scholar 

  39. Lumsden A (1990) The cellular basis of segmentation in the developing hindbrain. Trends in Neuroscience 13:329–339

    Article  CAS  Google Scholar 

  40. Mackie GO, Singla CL (1983) Studies on hexactinellid sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1873). Philos Trans R Soc Lond [Biol] 301:365–400

    Article  Google Scholar 

  41. Mobbs PG (1984) Neural networks in the mushroom bodies of the honeybee. J Insect Physiol 30:43–58

    Article  Google Scholar 

  42. Nieuwenhuys R, Voogd J, van Huijzen C (1988) The human central nervous system. Springer, New York

    Google Scholar 

  43. Northcutt RG, Kaas J (1995) The emergence and evolution of mammalian neocortex. TINS 18:373–379

    PubMed  CAS  Google Scholar 

  44. Northcutt RG (1981) Evolution of the telencephalon in nonmammals. Annu Rev Neurosci 4:301–350

    Article  PubMed  CAS  Google Scholar 

  45. Northcutt RG (1984) Evolution of the vertebrate central nervous system: patterns and processes. Am Zool 24:701–716

    Google Scholar 

  46. Northcutt RG (1987) Lungfish neural characters and their bearing on sarcopterygian phylogeny. In: Bemis WE, Burggren WW, Kemp N (eds) The biology and evolution of lungfishes. Liss, New York

    Google Scholar 

  47. Northcutt RG (1987) Brain and sense organs of the earliest vertebrates: reconstruction of a morphotype. In: Foreman RE, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary biology of primitive fishes. Plenum, New York (NATO ASI Series, series A: Life sciences, vol 103)

    Google Scholar 

  48. Northcutt RG (1989) Brain variation and phylogenetic trends in elasmobranch fishes. J Exp Zool Suppl 2:83–100

    Article  PubMed  CAS  Google Scholar 

  49. Northcutt RG, Gans C (1983) The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol 58:1–28

    Article  PubMed  CAS  Google Scholar 

  50. Okajima A (1953) Studies on the metachronal wave in Opalina. I. Electrical stimulation with the microelectrode. Jpn J Zool 11:87–100

    Google Scholar 

  51. Paulus HF (1979) Eye structure and the monophyly of the arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand/Reinhold, New York

    Google Scholar 

  52. Penzlin H (1989) Neuropeptides — occurrence and functions in insects. Naturwissenschaften 76:243–252

    Article  PubMed  CAS  Google Scholar 

  53. Polenova OA, Vesselkin NP (1993) Olfactory and nonolfactory projections in the river lamprey (Lampetra fluviatilis) telencephalon. J. Hirnforschung 34:261–279

    CAS  Google Scholar 

  54. Puelles L, Rubenstein JLR (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. TINS 16: 472–479

    PubMed  CAS  Google Scholar 

  55. Romer AS, Parson TS (1986) The vertebrate body. Saunders, Philadelphia

    Google Scholar 

  56. Roth G (1999) Kleine Gehirne — Grosse Gehirne. Naturwissenschaftliche Rundschau: 52(6):213–219

    Google Scholar 

  57. Roth G, Dicke U, Nishikawa K (1992) How do ontogeny, morphology, and physiology of sensory systems constrain and direct the evolution of amphibians? Am Nat 139:105–124

    Article  Google Scholar 

  58. Roth G, Nishikawa KC, Naujoks-Manteuffel C, Schmidt A, Wake DB (1993) Paedomorphosis and simplification in the nervous system of salamanders. Brain Behav Evol 42:137–170

    Article  PubMed  CAS  Google Scholar 

  59. Sandeman DC (1982) Organization of the central nervous system. In: Atwood HL, Sandemann DC (eds) The biology of Crustacea, vol 3. Academic, New York

    Google Scholar 

  60. Sandeman DC (1990) Structural and functional levels in the organization of decapod crustacean brains. In: Wiese K et al. (eds) Frontiers in crustacean neurobiology. Birkhäuser, Basel

    Google Scholar 

  61. Satterlie RA, Spencer AN (1983) Neuronal control of locomotion in hydrozoan medusae. J Comp Physiol 150:195–206

    Article  Google Scholar 

  62. Smith-Fernandez A, Pieau C, Reperant J, Boncinelli E, Wassef M (1998) Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisons in amniotes. Development 125:2099–2111

    Google Scholar 

  63. Spencer AN (1989) Chemical and electrical synaptic transmission in the Cnidaria. In: Anderson PAV (ed) Evolution of the first nervous systems. Plenum, New York (NATO ASI Series, series A: Life sciences, vol 188)

    Google Scholar 

  64. Strausfeld NJ, Bacon JP (1983) Multimodal convergence in the central nervous system of dipterous insects. In: Horn E (ed) Multimodal convergence in sensory system. Fischer, Stuttgart (Fortschritte der Zoologie, Bd 28)

    Google Scholar 

  65. Strausfeld NJ, Barth FG (1993) Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. J Comp Neurol 328:43–62

    Article  PubMed  CAS  Google Scholar 

  66. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Dev Biol 56:110–156

    Article  PubMed  CAS  Google Scholar 

  67. Ulinski PS (1983) Dorsal ventricular ridge. Wiley, New York

    Google Scholar 

  68. Wicht H, Northcutt RG (1998) Telencephalic connections in the Pacific hagfish (Eptatretus stouti), with special reference to the thalamopallial system. J. Comp. Neurol 395:245–260

    Article  PubMed  CAS  Google Scholar 

  69. Wullimann M F (1997) The Central Nervous System. In: Evans DH (ed) Physiology of Fishes, Vol. II, CRC Press, Boca Raton

    Google Scholar 

  70. Wullimann MF, Rooney DJ (1990) A direct cerebellotelencephalic projection in an electrosensory mormyrid fish. Brain Res 520:354–357

    Article  PubMed  CAS  Google Scholar 

  71. Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Clarendon, Oxford

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roth, G., Wullimann, M.F. (2001). Evolution der Nervensysteme und der Sinnesorgane. In: Dudel, J., Menzel, R., Schmidt, R.F. (eds) Neurowissenschaft. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56497-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56497-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62534-3

  • Online ISBN: 978-3-642-56497-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics