Skip to main content

Metallurgy and Technological Properties of Titanium and Titanium Alloys

  • Chapter
Titanium in Medicine

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Titanium, occasionally referred to as the “wonder metal”, has been utilized in a growing list of specialized applications since the Kroll process made the winning of this material from ores a commercial possibility in 1936 [1]. Titanium is the ninth most common element in the earth’s crust and is recovered from Ti02-rich deposits of rutile, ilmenite and leucoxene that are found on every continent. Since the discovery of titanium in 1794 [2], and up until Kroll’s innovative process development in 1936, there had been no practical method to recover titanium metal from these ores because of its pronounced affinity for oxygen. Modern ore extraction, beneficiation and chemical processes have since enabled the large-volume manufacturing of high-grade TiO2, an important pigment for paints and commercial products, and of titanium metal for the production of the CP (“Commercially Pure”) titanium grades, titanium-based alloys and other alloys systems.

To whom correspondence should be addressed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Imam MA, Fraker AC (1996) Titanium alloys as implant materials. In: Brown SA, Lemons JE (eds) Medical Applications of Titanium and its Alloys: The Material and Biological Issues. ASTM Special Technical Publication STP 1272 (Proceedings of a symposium held on 15 and 16 Nov 94 in Phoenix AZ, USA). West Conshohocken PA, USA, p 4

    Google Scholar 

  2. Collings EW (1984) The Physical Metallurgy of Titanium Alloys. American Society for Metals , Metals Park, OH

    Google Scholar 

  3. Breme J, Biehl V (1998) Metallic biomaterials. In: Black J, Hastings G (eds) Handbook of Biomaterial Properties. Chapman &Hall, London, Part II, Sect. 1, p 135

    Chapter  Google Scholar 

  4. Black J, Hastings G, ibid, p 137

    Google Scholar 

  5. Fontana MG (1970) Perspectives on corrosion of materials. Metallurgical transactions Vol. 1, The 1970 Campbell Memorial Lecture, ASM, pp 3251-3266

    Google Scholar 

  6. Steinemann SG (1987) Corrosion of titanium and titanium alloys for surgical implants. In: Lutjering G, Zwicker U, Bunk W (eds) Proceedings of the 5th International Conference on Titanium (Munich FRG, 1014 Sep 1984). Deutsche Gesellschaft fur Metallkunde, pp 1373-1379

    Google Scholar 

  7. Zitter H, Plenk H (1987) The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility. J Biomed Mater Res 21:881

    Article  CAS  Google Scholar 

  8. Steinemann SG, Mäusli PA (1988) Titanium alloys for surgical implants; biocompatibility from physiochemical principles. In: Lacombe P, Tricot R, Beranger G (eds) Proceedings of the 6th International Conference on Titanium (Cannes France, 06-09 Jun 88). Les Editions de Physique, pp 535-540

    Google Scholar 

  9. Black J (1984) Systematic effects of biomaterials. Biomaterials 5:11-18

    Article  CAS  Google Scholar 

  10. Williams DF (1998) Handbook of Biomaterial Properties. Black J and Hastings, ibid, Part III, Sect. 1, General concepts of biocompatibility, pp 481-489

    Google Scholar 

  11. Williams DF (1987) Definitions in Biomaterials. Elsevier, Amsterdam, pp 49-59

    Google Scholar 

  12. Steinemann SG, Perren SM (1984) Titanium alloys as metallic biomaterials. In: Lutjering G, Zwicker U, Bunk W (eds) Proceedings of the 5th International Conference on Titanium (Munich FRG, 10-14 Sep 84). Deutsche Gesellschaft fur Metallkunde, pp 1327-1334

    Google Scholar 

  13. Semlitsch M (1986) Classic and new titanium alloys for production of artificial hip joints. Proceedings of the technical program from the 1986 International Conference. Titanium Development Association, Dayton OH, USA, pp 721-740

    Google Scholar 

  14. Wang K, Gustavson L, Dumbleton J (1993) The characterization of Ti-12Mo-6Zr-2Fe - a new biocompatible titanium alloy developed for surgical implants. In: Eylon D, Boyer RR, Koss DA (eds) Beta Titanium Alloys in the 1990’s. The Minerals, Metals and Materials Society (Proceedings of a Symposium held 22-24 Feb 93 in Denver CO, USA), Warrendale PA, USA, pp 49-60

    Google Scholar 

  15. Schutz RW (1993) An overview of beta titanium alloy environmental behavior. Beta Titanium Alloys in the 1990’s, ibid, pp 75-91

    Google Scholar 

  16. Wang K, Gustavason J, Dumbleton JH (Aug 28, 1990) Method of making high strength, low modulus, ductile, biocompatible titanium alloy. US Patent Number 4,952,236

    Google Scholar 

  17. Wang K, Gustavason J, Dumbleton JH (Aug 15, 1989) High strength, low modulus, ductile, biocompatible titanium alloy. US Patent Number 4,857,269

    Google Scholar 

  18. Parris WM, Bania PJ (Dec 25, 1990) Oxidation resistant titanium based alloy. US Patent Number 4,980,127. Registered trademark of Titanium Metals Corporation, Denver, CO

    Google Scholar 

  19. Davidson JA, Kovacs P (Dec 8,1992) Biocompatible low modulus titanium alloy for medical implants. US Patent Number 5,169,597

    Google Scholar 

  20. Zardiackas LD, Mitchell DW, Disegi JA (1996) Characterization of Ti-15Mo beta titanium alloy for orthopedic implant applications. In: Brown SA, Lemons JE (eds) Medical Applications of Titanium and its Alloys: The Material and Biological Issues. ASTM Special Technical Publication STP 1272 (Proceedings of a symposium held on 15 and 16 Nov 94 in Phoenix AZ, USA). West Conshohocken PA, USA, pp 60-75

    Chapter  Google Scholar 

  21. Amick DD, Haygarth JC et al. (Oct 13,1998) Composite article, alloy and method. US Patent Number 5,820,707

    Google Scholar 

  22. Ahmed T, Rack HJ (Feb 16,1999) Low modulus biocompatible titanium base alloys for medical devices. US Patent Number 5,871,595

    Google Scholar 

  23. Brånemark PI, Adell R, Albrektsson T, Lekholm U, Lundkvist S, Rockier B (1983) Osseoin-tegrated titanium fixtures in the treatment of endentulosness. Biomaterials 4:25

    Article  Google Scholar 

  24. Steinemann SG (1994) Tissue compatibility of metals from physico-chemical principles. In: Kovacs P, Istephanous NS (eds) Proceedings of a symposium on the compatibilty of biomedical implants, Electrochemical Society Symposium Report. The Electrochemical Society, Pennington NJ, USA, pp 1-13

    Google Scholar 

  25. Steinemann SG (1988) Tissue compatibility of metals from physico-chemical principles. In: Lacombe P, Tricot R, Beranger G (eds) Proceedings of the 6th International Conference on Titanium. Les Editions de Physique, pp 535-540

    Google Scholar 

  26. Albrektsson T (1998) Hard tissue response. Handbook of biomaterial properties, ibid, Part III, Sect. 3, pp 504-507

    Google Scholar 

  27. Steinemann SG (1996) Surface reaction of titanium in living tissue. In: Gregory JK, Rack HJ, Eylon D (eds) Surface Performance of Titanium. The Minerals, Metals and Materials Society (Proceedings of a symposium held 07-09 Oct 96 in Cincinnati OH, USA), Warrendale PA, USA, pp 33-45

    Google Scholar 

  28. Donachie MJ Jr (ed) (1988) Titanium: A Technical Guide. ASM International, Metals Park OH, pp 1-4

    Google Scholar 

  29. Boyer R, Welsch G, Collings E (eds) (1994) Materials Properties Handbook: Titanium Alloys. ASM International, Metals Park OH, pp 3-11

    Google Scholar 

  30. Donachie MJ Jr, ibid, Fig. 1.2, p 4

    Google Scholar 

  31. Boyer R, Welsch G, Collings E, ibid

    Google Scholar 

  32. Donachie MJ Jr, ibid, Table 11.5, p 168, Fig. 3.2, p 22

    Google Scholar 

  33. Donachie MJ Jr, ibid, pp 9-19

    Google Scholar 

  34. Boyer R, Welsch G, Collings E, bid, pp 3-4

    Google Scholar 

  35. Bomberger HB, Froes FH (1984) The melting of titanium. J Metals Dec:39-47

    Google Scholar 

  36. Chinnis WR, Buttrill WH (1992). In: Froes FH, Caplan I (eds) Titanium ’92 Science and Technology. The Minerals, Metals and Materials Society, Warrendale PA, USA, pp 2363-2370

    Google Scholar 

  37. Tilmont SM, Harker HR (1993) Maximelt: an update. In: Bakish R (ed) Proceedings of the Conference on EB Melting and Refining - State of the Art. pp 214-225

    Google Scholar 

  38. Roberts RJ (1995) Larger scale cold crucible melting of titanium and its alloys. In: Blenkinsop P, Evans, Flower (eds) Titanium ’95 Science and Technology. The Minerals, Metals and Materials Society, Warrendale PA, USA, pp 1462-1469

    Google Scholar 

  39. Kuhlman GW (1996) Meeting the challenge of hot working titanium alloys into cost effective finished components. In: Weiss I, Srinivasan R, Bania PJ, Eylon D, Semiatin SL (eds) Advances in the Science and Technology of Titanium Alloy Processing. The Minerals, Metals and Materials Society (Proceedings of a symposium held 05-08 Feb 96 in Anaheim CA, USA), Warrendale PA, USA, pp 125-152

    Google Scholar 

  40. Davis M, Forbes-Jones R (1996) Manufacturing processes for semi-finished titanium biomedical alloys. In: Brown SA, Lemon JE (eds) Medical Applications of Titanium and its Alloys: The Material and Biological Issues, STP 1272, ASTM West Conshohocken PA, USA, pp 17-29

    Chapter  Google Scholar 

  41. Froes FH, Allen PG, Niinomi M (eds) Non-aerospace applications of titanium. The Minerals, Metals and Materials Society (Proceedings of a symposium held 16-19 Feb 98 in San Antonio TX, USA), pp 171-186

    Google Scholar 

  42. Wood JR, Russo PA (1997) Heat treatment of titanium alloys. Industrial Heating, April issue, pp 51-55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freese, H.L., Volas, M.G., Wood, J.R. (2001). Metallurgy and Technological Properties of Titanium and Titanium Alloys. In: Titanium in Medicine. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56486-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56486-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63119-1

  • Online ISBN: 978-3-642-56486-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics