Skip to main content

Biochemical Modification of Titanium Surfaces

  • Chapter

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Surfaces play an important role in the response of the biological environment to the artificial material device. One reason is the fact that the physical, chemical and biochemical properties of the implant surface control performance-relevant processes such as protein adsorption, cell-surface interaction and cell/tissue development at the interface between the body and the biomaterial [1]. This is true in general and for the diverse applications of titanium discussed in this book. Different aspects of this interaction are treated in different chapters: the role of inorganic (e.g. oxide) surface films, in Chaps. 7 and 8; the importance of surface topography for cell-surface interaction and for osteointegration, in Chaps. 11,15 and 17, respectively; and the role of surface chemistry in the interaction with blood, in Chap. 14.

To whom correspondence should be addressed

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (1996) Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, San Diego

    Google Scholar 

  2. Bearinger JP, Castner DG, Healy KE (1998) Biomolecular modifications of p(AAm-co-EG/AA) IPN’s supports osteoblast adhesion and phenotypic expression. J Biomater Sci: Polymer Edition 9(7):629–652

    Article  CAS  Google Scholar 

  3. Bearinger JP, Castner DG, Golledge SL, Rezania A, Hubchak S, Healy KE (1997) P(AAm-co-EG) interpenetrating networks grafted to oxide surfaces: Surface characterization, protein adsorption, and cell detachment studies. Langmuir 13:5175–5183

    Article  CAS  Google Scholar 

  4. Kenausis GL, Vörös J, Elbert DL, Huang N, Hofer R, Ruiz-Taylor L, Textor M, Hubbell JA, Spencer ND (2000) Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phy Chem B 104(14):3298–3309

    Article  CAS  Google Scholar 

  5. Textor M (unpublished)

    Google Scholar 

  6. Finklea HO, Murry RW (1979) Chemically modified electrodes. 12. Effects of silanization on titanium dioxide electrodes. J Phys Chem 83:353–358

    Article  CAS  Google Scholar 

  7. Plueddemann EP, Leyden DE (1991) Silane Coupling Agents. Plenum Press, New York

    Google Scholar 

  8. Cass T, Ligler FS (1999) Immobilized biomolecules in analysis. In: The Practical Approach Series. Oxford University Press, Oxford

    Google Scholar 

  9. Hong HG, Bohn P W, Sligar SG (1993) Optical determination of surface density in oriented metalloprotein nanostructures. Anal Chem 65:1635–1638

    Article  CAS  Google Scholar 

  10. Hong HG, Jiang M, Sliger SG, Bohn PW (1994) Cysteine-specific surface tethering of genetically engineered cytochromes for fabrication of metalloprotein nanostructures. Langmuir 10:153–158

    Article  CAS  Google Scholar 

  11. Lee GU, Chrisey LA, O’Ferrall CE, Pilloff DE, Turner NH, Colton RJ (1996) Chemically-specific probes for the atomic force microscope. Israel J Chem 36:81–87

    CAS  Google Scholar 

  12. Chrisey LA, Lee GU, O’Ferrall CE (1996) Covalent attachment of synthetic DNA to self-assembled monolayer films. Nucleic Acids Res 24:3031–3039

    Article  CAS  Google Scholar 

  13. Xiao SJ, Textor M, Spencer ND, Sigrist H (1998) Covalent attachment of cell-adhesive pep-tides containing (arg-gly-asp) sequences to titanium surfaces. Langmuir 14:5507–5516

    Article  CAS  Google Scholar 

  14. Xiao SJ, Textor M, Spencer ND, Wieland M, Keller B, Sigrist H (1997) Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment. J Mater Sci: Mater Med 8:867–872

    Article  CAS  Google Scholar 

  15. Lee YW, Reed-Mundell J, Sukenik CN, Zull JE (1993) Electrophilic siloxane-based self-assembled monolayers for thiol-mediated anchoring of peptides and proteins. Langmuir 9:3009–3014

    Article  CAS  Google Scholar 

  16. Zull JE, Reed-Mundell J, Lee Y W, Vezenov D, Ziats NP, Anderson JM, Sukenik CN (1994) Problems and approaches in covalent attachment of peptides and proteins to inorganic surfaces for biosensor applications. J Ind Microbiol 13:137–143

    Article  CAS  Google Scholar 

  17. Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, Mckee MD (1998) Chemical modification of titanium surfaces for covalent attachment of biomolecules. J Biomed Mater Res 40:324–335

    Article  CAS  Google Scholar 

  18. Puleo DA, Nanci A (1999) Understanding and controlling the bone-implant interface. Biomaterials 20:2311–2321

    Article  CAS  Google Scholar 

  19. Dee KC, Rueger DC, Andersen TT, Bizios R (1996) Conditions which promote mineralization at the bone-implant interface: a model in vitro study. Biomaterials 17:209–215

    Article  CAS  Google Scholar 

  20. Dee KC, Andersen TT, Bizioz B (1997) Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials. J Biomed Mater Res 37:9–19

    Article  Google Scholar 

  21. Clemence JF, Ranieri JP, Aebischer P, Sigrist H (1995) Photoimmobilization of a bioactive laminin fragment and pattern-guided selective neuronal cell attachment. Bioconjugate Chem 6:411–417

    Article  CAS  Google Scholar 

  22. Collioud A, Clemence J-F, Sanger M, Sigrist H (1993) Oriented and covalent immobilization of target molecules to solid supports: synthesis and application of a light-activatable and thiol-reactive crosslinking reagent. Bioconjugate Chem 4:528–536

    Article  CAS  Google Scholar 

  23. Weber M, Vasella A, Textor M, Spencer ND (1998) Glycosylidene carbenes part 27: Glucosi-dation of titanium dioxide with 1-aziglucoses: Preparation and characterization of modified titanium dioxide surfaces. Helv Chim Acta 81:1359–1372

    Article  CAS  Google Scholar 

  24. Hypolite CL, Mclernon TL, Adams DN, Chapman KE, Herbert CB, Huang CC, Distefano MD, Hu W-S (1997) Formation of microscale gradients of protein using heterobifunctional photolinkers. Bioconjugate Chem 8(5) 658–663

    Article  CAS  Google Scholar 

  25. Herbert CB, Mclernon TL, Hypolite CL, Adams DN, Pikus L, Huang CC, Fields GB, Letouneau PC, Distefano MD, Hu W-S (1997) Micropatterning gradients and controlling surface densities of photoactivatable biomolecules on self-assembled monolayers of oligo(ethylene glycol) alkanethiolates. Chem Biol 4(10):731–737

    Article  CAS  Google Scholar 

  26. Erdtmann M, Keller R, Baumann H (1994) Photochemical immobilization of heparin, der-matan sulphate, dextran sulphate and endothelial cell surface heparin sulphate onto cellulose membrane for the preparation of a thrombogenic and antithrombogenic polymers. Biomaterials 15:1043–1049

    Article  CAS  Google Scholar 

  27. Worch H, Scharnweber D (1998) Biologisierte Titanwerkstoffe. Z. Metallkd. 89 (2): 153–163

    CAS  Google Scholar 

  28. Scotchford CA, Cooper E, Leggett GJ, Downes S (1998) Growth of human osteoblast-like cells on alkanethiol on gold self-assembled monolayers: The effect of surface chemistry. J Biomed Mater Res 41:431–442

    Article  CAS  Google Scholar 

  29. Tanahashi M, Matsuda T (1997) Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res 34 (3):305–315

    Article  CAS  Google Scholar 

  30. Ulman A (1990) Self-assembled monolayers of alkyltrichlorosilanes: building blocks for future organic materials. Adv Mater 2(12):573–582

    Article  CAS  Google Scholar 

  31. Folkers JP, Gorman CB, Laibinis PE, Buchholz S, Whitesides GM (1995) Self-assembled monolayers of long-chain hydroxamic acids on the native oxide of metals. Langmuir 11:813–824

    Article  CAS  Google Scholar 

  32. Aronoff YG, Chen B, Lu G, Seto C, Schwartz J, Bernasek SL (1997) Stabilization of self-assembled monolayers of carboxylic acids on native oxides of metals. J Am Chem Soc 119(2):259–262

    Article  CAS  Google Scholar 

  33. Woodward JT, Ulman A, Schwartz DK (1996) Self-assembled monolayer growth of octade-cylphosphonic acid on mica. Langmuir 12:3626–3629

    Article  CAS  Google Scholar 

  34. Maege I, Jaehne E, Henke A, Adler HJP, Bram C, Jung C, Stratmann M (1998) Ultrathin organic layers for corrosion protection. Macromol Symp 126:7–24

    Article  CAS  Google Scholar 

  35. Brovelli D, Hähner G, Ruiz L, Hofer R, Kraus G, Waldner A, Schlösser J, Oroszlan P, Ehrat M, Spencer ND (1999) Highly oriented, self-assembled alkanephosphate monolayers on tan-talum (V) oxide surfaces. Langmuir 15:4324–4327

    Article  CAS  Google Scholar 

  36. Textor M, Ruiz L, Hofer R, Rossi A, Feldman K, Hähner G, Spencer ND (2000) Structural chemistry of self-assembled monolayers of octadecylphosphoric acid on tantalum oxide surfaces. Langmuir 16(7):3257–3271

    Article  CAS  Google Scholar 

  37. Hofer R, Textor M, Spencer ND (2000) Imaging of surface heterogeneity by the microdroplet condensation technique. Langmuir (submitted)

    Google Scholar 

  38. Hofer R, Textor M, Spencer ND (2000) Alkyl phosphate monolayers, self-assembled from aqueous solution onto metal oxide surfaces. Langmuir (submitted)

    Google Scholar 

  39. Hench LL, Wilson J (1993) An Introduction to Bioceramics. World Scientific, Singapore

    Book  Google Scholar 

  40. Hench LL (1994) Theory and clinical applications in bioceramics. In: Anderson OH, Yli-Urpo A (eds) Bioactive Ceramics. Butterworth-Heinemann, Oxford, pp 3–14

    Google Scholar 

  41. Horowitz E, Parr JE Characterization and Performance of Calcium Phosphate Coatings for Implants, ASTM STP 1196. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  42. Hanawa T (1991) Titanium and its oxide film: a substrate for formation of apatite. In: Davies JE (ed) The Bone-Biomaterial Interface. University of Toronto Press, Toronto, pp 49–61

    Google Scholar 

  43. Hanawa T, Ota M (1991) Calcium phosphate naturally formed on titanium in electrolytic solution. Biomaterials 12:767–774

    Article  CAS  Google Scholar 

  44. Hanawa T, Asami K, Asaoka A (1998) Repassivation of titanium and surface oxide film regenerated in simulated bioliquids. J Biomed Mater Res 40:530–538

    Article  CAS  Google Scholar 

  45. Barrere F, Layrolle P, Van Blitterswijk CA, de Groot K (1999) Biomimetic calcium phosphate coatings on Ti6A14V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+and HCO3 -. Bone 25(2 Suppl):107S–111S

    CAS  Google Scholar 

  46. Kim HM, Kim Y, Park SJ, Rey C, Lee H, Glimcher MJ, Ko JS (2000) Thin film of low-crystalline calcium phosphate apatite formed at low temperatures. Biomaterials 21(11):1129–1134

    Article  CAS  Google Scholar 

  47. Feng QL, Ciu FZ, Wang H, Kim TN, Kim JO (2000) Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH treatment. J Cryst Growth 210(4):735–740

    Article  CAS  Google Scholar 

  48. Wen HB, De Wijn JR, De Groot K (1998) Preparation of calcium phosphate coatings on titanium implant materials by simple chemistry. J Biomed Mater Res 41(2):227–236

    Article  CAS  Google Scholar 

  49. Hanawa T, Kon M, Ukai H, Murakami K, Miyamoto Y, Asaoka K (1997) Surface modification of titanium in calcium-ion-containing solutions. J Biomed Mater Res 34(3):273–278

    Article  CAS  Google Scholar 

  50. Ohtsuki C, Ida H, Hayakawa S, Osaka A (1997) Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides. J Biomed Mater Res 35:39–47

    Article  CAS  Google Scholar 

  51. Hanawa T, Murakami K, Kihara S (1994) Calcium phosphate precipitation on calcium-ion-implanted titanium in electrolyte. In: Horowitz E, Parr JE (eds) Characterization and Performance of Calcium Phosphate Coatings for Implants. ASTM STP 1196. American Society for Testing and Materials, Philadelphia, pp 170–184

    Chapter  Google Scholar 

  52. Hanawa T, Ukai H, Murakami K (1993) X-ray photoelectron spectroscopy of calcium-ion-implanted titanium. J Electron Spectrosc Relat Phenom 63:347–354

    Article  CAS  Google Scholar 

  53. Hanawa H, Kamiura Y, Yamamoto S, Kohgo T, Amamiya A, Ukai H, Murakami K, Asaoka K (1997) Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J Biomed Mater Res 36:131–136

    Article  CAS  Google Scholar 

  54. Ishizawa H, Ogino M (1999) Hydrothermal precipitation of hydroxyapatite on anodic titanium oxide films containing Ca and P. J Mater Sci 34(23):5893–5898

    Article  CAS  Google Scholar 

  55. Ishizawa H, Fujino M, Ogino M (1997) Histomorphometric evaluation of the thin hydroxya-patite layer formed through anodization followed by hydrothermal treatment. J Biomed Mater Res 35(2): 199–206

    Article  CAS  Google Scholar 

  56. Ishizawa H, Ogino M (1996) Thin hydroxyapatite layers formed on porous titanium using electrochemical and hydrothermal reaction. J Mater Sci 31(23):6279–6284

    Article  CAS  Google Scholar 

  57. Ishizawa H, Fujino M, Ogino M (1995) Mechanical and histological investigation of hydro-thermally treated and untreated anodic titanium-oxide films containing Ca and P. J Biomed Mater Res 29(11):1459–1468

    Article  CAS  Google Scholar 

  58. Ishizawa H, Ogino M (1995) Characterization of thin hydroxyapatite layers formed on anodic titanium-oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 29(9):1071–1079

    Article  CAS  Google Scholar 

  59. Ishizawa H, Ogino M (1995) Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res 29(l):65–72

    Article  CAS  Google Scholar 

  60. Fini M, Cigada A, Rondelli G, Chiesa R, Giardino R, Giavaresi G, Aldini NN, Torricelli P, Vicentini B (1999) In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium. Biomaterials 20(17): 1587–1594

    Article  CAS  Google Scholar 

  61. Han Y, Xu KW, Lu JA, Wu Z (1999) The structural characteristics and mechanical behaviors of nonstoichiometric apatite coatings sintered in air atmosphere. J Biomed Mater Res 45(3):198–203

    Article  CAS  Google Scholar 

  62. Schreckenbach J, Schlottig F, Textor M, Spencer ND, Marx G (1999) Characterization of anodic spark-converted titanium surfaces for biomedical applications. J Mater Sci: Mater Med 10(8):453–457

    Article  CAS  Google Scholar 

  63. Pou J, Arias JL, Mayor MB, Leon B, Perez-Amor M (2000) Application of calcium phosphate coatings produced by pulsed laser deposition to osteointegratable devices. Proc Laser Microfabrication Conf. ICALEO ’99:67–76

    Google Scholar 

  64. Cleries L, Fernandez-Pradas JM, Morenza JL (2000) Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation. Biomaterials 21(18):1861–1865

    Article  CAS  Google Scholar 

  65. Yoshinari M, Hayakawa T, Wolke JCG, Nemoto K, Jansen JA (1997) Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings. J Biomed Mater Res 37:60–67

    Article  CAS  Google Scholar 

  66. Wolke JGC, De Groot K, Jansen JA (1998) Dissolution and adhesion behavior of radiofrequency magnetron-sputtered Ca-P coatings. J Mater Sci 3(13):3371–3376

    Article  Google Scholar 

  67. Zeng H, Chittur KK, Lacefield WR (1999) Dissolution/reprecipitation of calcium phosphate thin films produced by ion beam sputter deposition technique. Biomaterials 20(5):443–451

    Article  CAS  Google Scholar 

  68. Wang C, Chen Z, Guan K, Liu Z, Wang P, Zheng S, Liao X (2000) Structural characterization of ion beam sputter deposited calcium phosphate coatings. Peop Rep China Surf Coat Technol 130(1):39–45

    Article  CAS  Google Scholar 

  69. Nakamura S, Ohgaki M, Kobayashi T, Hamagami J, Yamashita K (1999) Biological evaluation and surface properties of bone-like hydroxyapatite films prepared by RF-sputtering method. Proc Int Symp Ceram Med 12:467–470

    CAS  Google Scholar 

  70. Ellingsen JE, Pinholt FM (1995) Pretreatment of titanium implants with lanthalum ions alters the bone reaction. J Mater Sci: Mater Med 6:125–129

    Article  CAS  Google Scholar 

  71. Chapman D (1993) Biomembranes and new hemocompatible materials. Langmuir 9:39–45

    Article  CAS  Google Scholar 

  72. Ishihara K, Oshida H, Endo Y, Ueda T, Watenabe A, Nakabayashi N (1992) Hemocompati-bility of human whole blood on polymers with a phospholipid polar group and its mechanism. J Biomed Mater Res 26:1543–1552

    Article  CAS  Google Scholar 

  73. Claesson P (1993) Poly(ethylene oxide) surface-coatings - relationships between intermolecular forces, layer structure and protein repellency. Colloids Surf A 77:109–118

    Article  Google Scholar 

  74. Jeon SI, Lee JH, Andrade JD, De Gennes PG (1991) Protein-surface interactions in the presence of polyethylene oxide. II. Effect of protein size. J Colloid Interface Sci 142:149–166

    Article  CAS  Google Scholar 

  75. Healy KE, Thomas CH, Rezania A, Kim JE, McKeown PJ, Lom B, Hockberger PE (1996) Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. Biomaterials 17:195–208

    Article  CAS  Google Scholar 

  76. Rezania A, Johnson R, Lefkow a R, Healy KE (1999) Bioactivation of metal oxide surfaces. 1. Surface characterization and cell response. Langmuir 15(20):6931–6939

    Article  CAS  Google Scholar 

  77. Irvine DJ, Mayes AM, Satija SK, Barker JG, Sofia-AUgor SJ, Griffith LG (1998) Comparison of tethered star and linear poly(ethylene oxide) for control of biomaterials surface properties. J Biomed Mater Res 40:498–509

    Article  CAS  Google Scholar 

  78. Sofia SJ, Premnath V, Merrill E W (1998) Poly(ethylene oxide) grafted to silicon surfaces: grafting density and protein adsorption. Macromolecules 31:5059–5070

    Article  CAS  Google Scholar 

  79. Amiji M, Park K (1994) Analysis on the surface adsorption of PEO/PPO/PEO triblock copolymers by radiolabeling and fluorescence techniques. J Appl Polym Sci 52:539–544

    Article  CAS  Google Scholar 

  80. Amiji M, Park K (1992) Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers. Biomaterials 13:682–692

    Article  CAS  Google Scholar 

  81. Freij-Larsson C, Nylander T, Jannasch P, Wesslen B (1996) Adsorption behavior of amphiphilic polymers at hydrophobic surfaces: effects on protein adsorption. Biomaterials 17:2199–2218

    Article  CAS  Google Scholar 

  82. Huang N, Michel R, Vörös J, Textor M, Hofer R, Rossi A, Elbert DL, Hubbell JA, Spencer ND (2001) Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: Surface analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir 17(2):489–498

    Article  CAS  Google Scholar 

  83. Harder P, Grunze M, Dahint R, Whitesides G M, Laibinis P E (1998) Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J Phys Chem B 102:426–436

    Article  CAS  Google Scholar 

  84. Kawaguchi S, Imai G, Suzuki J, Miyahara A, Kitano T (1997) Aqueous solution properties of oligo- and poly(ethylene oxide) by static light scattering and intrinsic viscosity. Polymer 38(12):2885–2891

    Article  CAS  Google Scholar 

  85. Claesson PM, Blomberg E, Paulson O, Malmsten M (1996) Adsorption and interaction of a graft copolymer of poly(ethylene imine) and poly(ethylene oxide). Colloids Surf A 112:131–139

    Article  CAS  Google Scholar 

  86. Wang X, Spencer HG (1996) Solute-solute separations of binary-solute solutions using formed-in-place membranes. J Appl Polymer Sci 61(5):827–832

    Article  CAS  Google Scholar 

  87. Barie N, Rapp M, Sigrist H, Ache HJ (1998) Covalent photolinker-mediated immobilization of an intermediate dextran layer to polymer-coated surfaces for biosensing applications. Biosensors and Bioelectronics 13:855–860

    Article  CAS  Google Scholar 

  88. Culp LA, Sukenik CN (1994) Glass and metal surfaces derivatized with self-assembled monolayers: Cell type-specific modulation of fibronectin adhesion functions. J Tissue Culture Methods 16:161–172

    Article  Google Scholar 

  89. Healy KE, Rezania A, Stile RA (1999) Designing biomaterials to direct biological responses. Bioartificial Organs II: Technology, Medicine, and Materials 875:24–35

    CAS  Google Scholar 

  90. Massia SP, Hubbell JA (1991) An RGD spacing of 440 nm is sufficient for integrin αvß3 mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell Biol 114:1089–1100

    Article  CAS  Google Scholar 

  91. Roberts C, Chen CS, Mrksich M, Martichonok V, Ingber DE, Whitesides GM (1998) Using mixed self-assembled monolayers presenting RGD and (EG)3OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces. J Am Chem Soc 120:6548–6555

    Article  CAS  Google Scholar 

  92. Xiao SJ (1999) Tailored Organic Thin Films on Gold and Titanium. Ph.D. thesis Nr.13058, Swiss Federal Institute of Technology (ETH), Zurich

    Google Scholar 

  93. Rezania A, Healy KE (1999) Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol Progr 15(1):19–32

    Article  CAS  Google Scholar 

  94. Bianco P, Fisher LW, Young MF, Termine JD, Robey PG (1991) Expression of bone sialoprotein (BSP) in developing human tissue. Calcif Tissue Int. 49:421–426

    Article  CAS  Google Scholar 

  95. Healy KE, Harbers GM, Barber TA, Sumner DR (2000) Osteoblast interactions with engineered surfaces, In: Davies JE (ed) Bone Engineering. Publisher: em squared inc, Toronto, pp 268–281

    Google Scholar 

  96. Ferris DM, Moodie GD, Dimond PM, Gioranni CWD, Ehrlich MG, Valentini RF (1999) RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials 20:2323–2331

    Article  CAS  Google Scholar 

  97. Reddi AH (1984) Extracellular matrix and development. In: Piez KA, Reddi AH (eds) Extracellular Matrix Biochemistry. Elsevier, New York, pp 375–412

    Google Scholar 

  98. Ripamonti U, Reddi AH (1994) Periodontal regeneration: potential role of bone morphogenetic proteins. J Peridont Res 29:225–235

    Article  CAS  Google Scholar 

  99. Ripamonti U, Van Der Heever B, Sampath TK, Tucker MM, Rueger DC, Reddi AH (1996) Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (hop-1, bone morphogenetic protein-7). Growth Factors 13:1–17

    Article  Google Scholar 

  100. Ripamonti U, Reddi AH (1997) Tissue engineering, morphogenesis, and regeneration of the peridontal tissue by bone morphogenetic proteins. Crit Rev Oral Biol Med 8(2): 154–163

    Article  CAS  Google Scholar 

  101. Ripamonti U (1996) Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17:31–35

    Article  CAS  Google Scholar 

  102. Wolke JGC, Vercaigne S, Van Der Waerden JPCM, Schaeken HG, Jansen JA (1999) In vivo dissolution behavior of various magnetron sputtered Ca-P coatings on roughened titanium implants. Proc Int Symp Ceram Med 12:487–490

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xiao, SJ., Kenausis, G., Textor, M. (2001). Biochemical Modification of Titanium Surfaces. In: Titanium in Medicine. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56486-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56486-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63119-1

  • Online ISBN: 978-3-642-56486-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics