Advertisement

Physical and Chemical Vapor Deposition and Plasma-assisted Techniques for Coating Titanium

  • Roger Thull
  • David Grant
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Bioengineering solves problems that confront health professionals in daily practice. Medically-related technical challenges range from complex large-scale diagnostic or managing tools such as NMR tomography and laboratory medicine or hospital information systems, to the design and development of implant devices and materials in a wide range of applications from artificial cardiac valves to plates, screws and joints in orthopaedic or cranio-maxillofacial surgery.

Keywords

Chemical Vapor Deposition Thin Solid Film Glow Discharge Titanium Nitride Surf Coat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chapman BN (1980) Glow Discharge Processes. John Wiley & Sons, New York Chichester Brisbane Toronto SingaporeGoogle Scholar
  2. 2.
    Thornton JA, Greene JE (1994) Plasmas in deposition processes. In: Bunshah RF (ed) Handbook of Depositon Technologies for Films and Coatings. Noyes Publications, Park Ridge, N.J.,USAGoogle Scholar
  3. 3.
    Thornton JA, Penfold AS (1978) In: Vossen JL, Kern W (eds) Thin Film Processes. Academic Press, New YorkGoogle Scholar
  4. 4.
    Butler HS, Kino GS (1963) Phys Fluids 6:1346 ffCrossRefGoogle Scholar
  5. 5.
    Mattox DM (1994) Surface preparation for film and coating deposition processes. In: Bunshah RF (ed) Handbook of Deposition Technologies for Films and Coatings. Noyes Publication, Park Ridge, N. J., USAGoogle Scholar
  6. 6.
    Balwanz WW (1978) Plasma cleaning of surfaces. In: Mittal KL (ed) Surface Contamination, Vol. 1. Plenum Press, New York LondonGoogle Scholar
  7. 7.
    Bhushan B (1978) Techniques for removing surface contaminants in thin film deposition. In: Mittal KL (ed) Surface Contamination, Vol. 2. Plenum Press, New York LondonGoogle Scholar
  8. 8.
    Aronsson BO, Lausmaa J, Kasemo B (1997) Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. J Biomed Mater Res 35:49–73CrossRefGoogle Scholar
  9. 9.
    Freller H (1991) Beschichtungen durch Plasma assistierte Dampfphasen Abscheidung. Jahrbuch Oberflächentechnik, Metall-Verlag, Berlin, pp 228–252Google Scholar
  10. l0.
    Haefer RA (1987) Oberflächen und Dünnschicht-Technologie, Teil 1. In: Ilschner B (ed) WFT Werkstoff-Forschung und Technik 5. Springer, Berlin Heidelberg New York London Paris TokyoGoogle Scholar
  11. 11.
    Suheil MH, Rao GM, Mohan S (1991) Studies on the properties of zirconia films prepared by direct current reactive magnetron sputtering. J Vac Sci Technol A9:2675–2677Google Scholar
  12. 12.
    Mattox DM (1994) Ion plating. In Bunshah RF (ed) Handbook of Deposition Technologies for Films and Coatings. Noyes Publication, Park Ridge, N. J., USAGoogle Scholar
  13. 13.
    Movchan BA, Demchiskin AV (1969) Structure and properties of thick vacuum-condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium oxide. Fizika Metall 28:653Google Scholar
  14. 14.
    Thornton JA (1994) New industries and applications for advanced materials technology. SAMPE 19:443Google Scholar
  15. 15.
    Bunshah RF (1994) Evaporation: process, bulk, microstructures and mechanical properties. In: Bunshah RF (ed) Handbook of Deposition Technologies for Films and Coatings. Noyes Publication, Park Ridge, N. J., USAGoogle Scholar
  16. 16.
    Morrison SR (1984) Electrochemistry at Semiconductor and Oxidized Metal Electrodes. Plenum Press, New York LondonGoogle Scholar
  17. 17.
    Ratner BD, Rosen JJ, Hoffman AS, Scharpen LH (1978) An exca study of surface contaminants on glass substrates for cell adhesion. In: Mittal KL (ed) Surface Contamination, Vol 2. Plenum Press, New York LondonGoogle Scholar
  18. 18.
    Van Wagenen RA, Andrade JD (1989) Flat plate streaming potential investigations: hydrodynamics and electrokinetic equivalency. J Colloid Sci 76:305–14Google Scholar
  19. 19.
    Bockris JOM, Khan SUM (1993) Surface Electrochemistry. Plenum Press, New York LondonCrossRefGoogle Scholar
  20. 20.
    Thull R, Reuther J (1991) Enossales Zahnimplant. Europäisches Patentamt, Veröffentli-chungsnummer: EP 0 445 667 A2Google Scholar
  21. 21.
    Thull R (1998) Tissue implant interaction. In Helsen JA, Breme HJ (ed) Metals and Biomaterials. John Wiley & Sons, Chichester New York Weinheim Brisbane Singapore TorontoGoogle Scholar
  22. 22.
    Ives M, Brooks JS (1991) Cawley: fundamental studies of the steered arc technique. Surf Coat Technol 49:244–252CrossRefGoogle Scholar
  23. 23.
    Breme HJ, Barbosa MA, Rocha LA (1998) Adhesion to ceramics. In: Helsen JA, Breme HJ (eds) Metals as Biomaterials. John Wiley & Sons, New YorkGoogle Scholar
  24. 24.
    Jones M, McColl IR, Grant DM, Parker KG, Parker T.L (1999) Haemocompatibility of DLC and TiC-TiN interlayers on titanium. Diamond and Related Materials 8:457–462CrossRefGoogle Scholar
  25. 25.
    Archer NJ (1981) The plasma assisted CVD of TiC, TiN and TiCxN1_x. Thin Solid Films 80:221–225CrossRefGoogle Scholar
  26. 26.
    Kaizuka T, Shinriki H, Takeyasu N, Ohta T (1994) Conformal chemical vapour deposition TiN (111) film formation as an underlayer of Al for highly reliable interconnects. Jpn Appl Phys 33:470–474CrossRefGoogle Scholar
  27. 27.
    Jiang C, Goto T, Hirai T (1994) Morphology and preferred orientation of TiN plates by chemical vapour deposition. J Mater Sci 29:669–675CrossRefGoogle Scholar
  28. 28.
    Cheng HE, Hon MH (1996) Texture formation in titanium nitride films prepared by chemical vapour deposition. J Appl Phys 79(10):8047–8053CrossRefGoogle Scholar
  29. 29.
    Munz WD, Hofmann D, Hartig K (1982) A high rate sputtering process for the formation of hard friction reducing TiN coatings on tools. Thin Solid Films 96:79–86CrossRefGoogle Scholar
  30. 30.
    Sundgren JE, Johansson BO, Karlsson SE (1983) Mechanisms of reactive sputtering of titanium nitride & titanium carbide I. Influence of process parameters on film composition. Thin Solid Films 105:353–366CrossRefGoogle Scholar
  31. 31.
    Brat T, Parikh N, Tsai NS, Sinha AK, Poole J, Wickersham C Jr (1987) Characterisation of titanium nitride films sputter deposited from a high purity titanium nitride target. J Vac Sci Technol B 5(6):1741–1747CrossRefGoogle Scholar
  32. 32.
    Pan A, Greene JE (1982) Interfacial chemistry effects on the adhesion of sputter deposited TiC films to steel substrates. Thin Solid Films 97:79–89CrossRefGoogle Scholar
  33. 33.
    Goldfarb I, Pelleg J, Zevin L, Croitoru N (1991) Lattice distortion in thin films of IVB metal (Ti, Zr, Hf) nitrides. Thin Solid Films 200:117–127CrossRefGoogle Scholar
  34. 34.
    Poitevin JM, Lemperiere G, Tardy J (1983) Influence of substrate bias on the composition, structure & electrical properties of reactively sputtered TiN films. Thin Solid Films 97:69–77CrossRefGoogle Scholar
  35. 35.
    Eizenberg M, Murarka SP (1983) Reactively sputtered TiC thin films: preparation and properties. J Appl Phys 54(6):3190–3194CrossRefGoogle Scholar
  36. 36.
    Roth R, Schubert J, Martin M, Fromm E (1995) Effect of process parameter changes on the composition of magnetron sputtered & evaporated TiN & A1N films measured by UHV in situ techniques. Thin Solid Films 270:320–324CrossRefGoogle Scholar
  37. 37.
    Richter F, Kupfer H, Giegengack H, Schaarschmidt G, Scholze F, Elstner F, Hecht G (1992) Fundamental mechanisms of titanium nitride formation by d.c. magnetron sputtering. Surf Coat Technol 54/55:338–342Google Scholar
  38. 38.
    Mumtaz A, Class WH (1982) Colour of titanium nitride prepared by reactive dc magnetron sputtering. J Vac Sci Technol A 20(3):342–345Google Scholar
  39. 39.
    Manory R (1987) Effects of deposition parameters on structure and composition of reactively sputtered TiNx films. Surface Engineering 3(3):233–238Google Scholar
  40. 40.
    Oh UC, Je JH (1993) Effects of strain energy on the preferred orientation of TiN thin films. JApplPhys 3(1):1692–1696CrossRefGoogle Scholar
  41. 41.
    Crummenauer J, Stock HR, Mayr P (1995) Influence of substrate temperature and plasma power density on the properties of PACVD TiN. Materials and Manufacturing Processes 10(6):1267–1276CrossRefGoogle Scholar
  42. 42.
    Laimer J, Stori H, Rodhammer P (1989) PACVD of titanium nitride in a capacitively coupled radio frequency discharge. J Vac Sci Technol A 7(5):2952–2959CrossRefGoogle Scholar
  43. 43.
    Laimer J, Stori H, Rodhammer P (1989) PACVD of titanium nitride in a capacitively coupled radio frequency discharge. J Vac Sci Technol A 7(5):2952–2959CrossRefGoogle Scholar
  44. 44.
    Kobayashi M, DoiY (1978) TiN and TiC coatings on cemented carbide by ion plating. Thin Solid Films 54:67–74CrossRefGoogle Scholar
  45. 45.
    Jeong JI, Hong JH, Kang JS, Shin HJ, Lee YP (1991) Analysis of TiC & TiN films prepared by an arc induced ion plating. J Vac Sci Technol A 9(5):2618–2622CrossRefGoogle Scholar
  46. 46.
    Whitmell DS, Williamson R (1976) Deposition of hard surface layers by hydrocarbon cracking in a glow discharge. Thin Solid Films 35:255–261CrossRefGoogle Scholar
  47. 47.
    Grill A, Patel V (1993) Tribological properties of diamond-like carbon and related materials. Diamond and Related Materials 2:597–605CrossRefGoogle Scholar
  48. 48.
    Holland L, Ohja SM (1979) Growth of carbon films with random atomic structure from ion impact damage in a hydrocarbon plasma. Thin Solid Films 58:107–116CrossRefGoogle Scholar
  49. 49.
    Dowling DP, Ahern MJ, Kelly TC, Meenan BJ, Brown NMD, O’Connor GM, Glynn TJ (1992) Characterisation study of diamond and diamond like carbon. Surf Coat Technol 53:177–183CrossRefGoogle Scholar
  50. 50.
    Bubenzer A, Dischler B, Brandt G, Koidl P (1983) RF plasma deposited amorphous hydro-genated hard carbon thin films: preparation, properties and applications. J Appl Phys 54(8):4590–4595CrossRefGoogle Scholar
  51. 51.
    Berg S, Andersson LP (1979) DLC films produced in a butane plasma. Thin Solid Films 58:117–120CrossRefGoogle Scholar
  52. 52.
    Andersson LP, Berg S, Norstrom H, Olaison R (1979) Properties and coating rates of DLC films produced by RF glow discharge of hydrocarbon gases. Thin Solid Films 63:155–160CrossRefGoogle Scholar
  53. 53.
    Kleber R, Weiler M, Krüger A, Sattel S, Kunz G, Jung K, Ehrhardt H (1993) Influence of ion energy and flux composition on the properties of plasma deposited amorphous carbon and a-C:H films. Diamond and Related Materials 2:246–250CrossRefGoogle Scholar
  54. 54.
    Nyaiesh AR, Kirby RE, King FK, Garwin EL (1985) New radio frequency technique for deposition of hard carbon films. Journal of Vacuum Science and Technology A 3(3):610–613CrossRefGoogle Scholar
  55. 55.
    Mutsukura N, Miyatani K (1995) Deposition of DLC films in a CH4-He RF plasma Diamond and Related Materials 4:342–345CrossRefGoogle Scholar
  56. 56.
    Prince ET, Romach MM (1985) Thin films of hydrogenated amorphous carbon prepared by RF plasma decomposition of CH4. J Vac Sci Technol A 3(3):694–695CrossRefGoogle Scholar
  57. 57.
    Vora H, Moravec TJ (1981) Structural investigation of thin films of DLC. J Appl Phys 52(10):6151–6157CrossRefGoogle Scholar
  58. 58.
    Natarajan V, Lamb JD, Woollam JA, Liu DC, Gulino A (1985) DLC films: optical absorption, dielectric properties and hardness dependence on deposition parameters. J Vac Sci Technol A 3(3):681–685CrossRefGoogle Scholar
  59. 59.
    Komath M, Zambare M, Gangal SA, Kulkarni SK (1994) RF PACVD of DLC films from methanol-water vapour mixtures. Diamond and Related Materials 4:15–19CrossRefGoogle Scholar
  60. 60.
    Pappas DL, Hopwood J (1994) Deposition of diamond like carbon using a radio frequency induction plasma. J Vac Sci Technol A 12(4): 1576–1581CrossRefGoogle Scholar
  61. 61.
    Roth D, Rau B, Roth S, Mai J (1994) Large area and 3D deposition of DLC flilms for industrial applications. Surf Coat Technol 68/69:783–787CrossRefGoogle Scholar
  62. 62.
    O’Leary A, Dowling DP, Donnelly K, O’Brien TP, Kelly TC, Weill N, Eloy R (1995) Diamond-like carbon coating for biomedical applications. Key Engineering Materials 99–100:301–308CrossRefGoogle Scholar
  63. 63.
    Franks J, Ng TL, Wright AC (1988) Preparation and characterisation of diamond like carbon films. Vacuum 38(8–10)749–751CrossRefGoogle Scholar
  64. 64.
    Panwar OS, Sarangi K, Dixit PN, Bhattacharyya R (1995) Diamond like carbon films grown using a saddle field source. J Vac Sci Technol A 13(5):2519–2524CrossRefGoogle Scholar
  65. 65.
    Scheibe H-J, Drescher D, Kolitsch A, Mensch A (1995) Investigation of surface topography, morphology and structure of amorphous carbon films by AFM and TEM. Fresenius’ J Anal Chem 353:690–694CrossRefGoogle Scholar
  66. 66.
    Voevodin AA, Capano MA, Safriet AJ, Doonley MS, Zabinski JS (1996) Combined magnetron sputtering and PLD of carbides and DLC films. Appl Phys Lett 69(2):188–190CrossRefGoogle Scholar
  67. 67.
    Seo SC, Ingram DC, Richardson HH (1995) Effect of substrate bias on the properties of DLC films deposited using unbalanced magnetron sputtering. J Vac Sci Technol A 13(6):2856–2862CrossRefGoogle Scholar
  68. 68.
    Suzuki J, Okada S (1995) Deposition of DLC films using electron cyclotron resonance PACVD from ethylene gas. Jpn J Appl Phys Part 2, Letters 34(9b):1218–1220CrossRefGoogle Scholar
  69. 69.
    Seo SC, Ingram DC, Richardson HH (1995) Effect of substrate bias on the properties of DLC films deposited using unbalanced magnetron sputtering. J Vac Sci Technol A 13(6):2856–2862CrossRefGoogle Scholar
  70. 70.
    Mori T, Namba Y (1983) Hard diamond like carbon films deposited by ionised depostion of methane gas. J Vac Sci Technol A l(l):23–27CrossRefGoogle Scholar
  71. 71.
    Cachoncinlle C, Pouvesle JM, Davanloo F, Coogan JJ, Collins CB (1990) Fluorescence of high-pressure argon excited by an energetic flash X-ray source. J Phys D: Appl Phys 23:984–986CrossRefGoogle Scholar
  72. 72.
    Lossy R, Pappas DL, Roy RA, Cuomo JJ, Sura VM (1992) Filtered arc deposition of amorphous diamond. Appl Phys Lett 61(2):171–173CrossRefGoogle Scholar
  73. 73.
    Robertson J (1992) Properties of diamond-like carbon. Surf Coat Technol 50:185–203CrossRefGoogle Scholar
  74. 74.
    Sproul WD (1986) Reactively sputtered nitrides and carbides of titanium, zirconium and hafnium. J Vac Sci Technol A 4(6):2874–2878CrossRefGoogle Scholar
  75. 75.
    Wittmer M (1985) Properties and microelectronic applications of thin films of refractory metal nitrides. J Vac Sci Technol 3(4): 1797–1803CrossRefGoogle Scholar
  76. 76.
    Brown JD, Govers MR (1995) Study of titanium nitrogen films deposited in an electron beam evaporation unit. J Vac Sci Technol A 13(5):2328–2335CrossRefGoogle Scholar
  77. 77.
    Kobayashi M, Doi Y (1978) TiN and TiC coatings on cemented carbide by ion plating. Thin Solid Films 54:67–74CrossRefGoogle Scholar
  78. 78.
    Kaizuka T, Shinriki H, Takeyasu N, Ohta T (1994) Conformal chemical vapour deposition TiN (111) film formation as an underlayer of Al for highly reliable interconnects. Jpn J Appl Phys 33:470–474CrossRefGoogle Scholar
  79. 79.
    Pelleg J, Zevin LZ, Lungo S, Croitoru N (1991) Reactive sputter deposited TiN films on glass substrates. Thin Solid Films 197:117–128CrossRefGoogle Scholar
  80. 80.
    Lou HQ, Axen N, Somekh RE, Hutchings IM (1997) Effect of deposition conditions on the characteristics of reactively sputtered TiN films. Surf Coat Technol 90:123–127CrossRefGoogle Scholar
  81. 81.
    Hoang NH, McKenzie DR, McFall WD, Yin Y (1996) Properties of TiN films deposited at low temperature in a new plasma based deposition system. J Appl Phys 80(11):6279–6285CrossRefGoogle Scholar
  82. 82.
    Adjaotter AA, Meletis EI, Logothetidis S, Alexandrou I, Kokkou S (1995) Effect of bias on sputer-deposited TiCx, TiNy and TiCxNy thin films. Surf Coat Technol 76–77:142–148CrossRefGoogle Scholar
  83. 83.
    Hoang NH, McKenzie DR, McFall WD, Yin Y (1996) Properties of TiN films deposited at low temperature in a new plasma based deposition system. J Appl Phys 80(11):6279–6285CrossRefGoogle Scholar
  84. 84.
    Poulek V, Musil J, Valvoda V, Cerny R (1988) Microhardness of Ti-N films containing the Ti2N phase. J Phys D: Appl Phys 21:1657–1658CrossRefGoogle Scholar
  85. 85.
    Wittmer M (1985) Properties and microelectronic applications of thin films of refractory metal nitrides. J Vac Sci Technol A 3(4): 1797–1803CrossRefGoogle Scholar
  86. 86.
    Suri AK, Nimmagadda R, Bunshah RF (1980) Synthesis of titanium nitride by activated reactive evaporation. Thin Solid Films 72:529–533CrossRefGoogle Scholar
  87. 87.
    Elstner F, Ehrlich A, Giegengack H, Kupfer H, Richter F (1994) Structure and properties of titanium nitride thin films deposited at low temperatures using direct current magnetron sputtering. J Vac Sci Technol A 12(2):476–483CrossRefGoogle Scholar
  88. 88.
    Kobayashi M, DoiY (1978) TiN and TiC coatings on cemented carbide by ion plating. Thin Solid Films 54:67–74CrossRefGoogle Scholar
  89. 89.
    Bendavid A, Martin PJ, Wang X, Wittling M, Kinder TJ (1995) Deposition & modification of titanium nitride by ion assisted arc deposition. J Vac Sci Technol A 13(3): 1658–1664CrossRefGoogle Scholar
  90. 90.
    Greene JE, Sundgren J-E, Hultman L, Petrov I, Bergstrom DB (1995) Development of preferred orientation in polycrystalline TiN layers grown by ultra high vacuum reactive magnetron sputtering. Appl Phys Lett 67(20):2928–2930CrossRefGoogle Scholar
  91. 91.
    Kuzel R Jr, Cerny R, Valvoda V, Blomberg M, Merisalo M, Kadlec S (1995) Complex XRD microstructural studies of hard coatings applied to PVD deposited TiN films: Part II Transition from porous to compact films and microstructural inhomogeneity of the layers. Thin Solid Films 268:72–82CrossRefGoogle Scholar
  92. 92.
    Quayhaegens C, Knuyt G, Stals LM (1996) Residual macroscopic stress in highly preferrentially oriented titanium nitride coatings deposited on various steel types. J Vac Sci Technol A 14(4):2462–2469CrossRefGoogle Scholar
  93. 93.
    Wengnemair H, Gerlach JW, Preckwinkel U, Stritzker B, Rausenbach B (1996) Photon and ion beam assisted deposition of titanium nitride. Appl Surf Sci 99:313–318CrossRefGoogle Scholar
  94. 94.
    Zhao JP, Wang X, Chen ZY, Yang SQ, Shi TS, Liu X (1997) Effect of film thickness on preferred growth of TiN films during filtered arc deposition. J Mater Sci Lett 16:974–976CrossRefGoogle Scholar
  95. 95.
    Je JH, Noh DY, Kim HK, Liang KS (1997) Preferred orientation of TiN films by a real time synchrotron x-ray scattering. J Appl Phys 81(9):6126–6133CrossRefGoogle Scholar
  96. 96.
    Pelleg J, Zevin LZ, Lungo S, Croitoru N (1991) Reactive sputter deposited TiN films on glass substrates. Thin Solid Films 197:117–128CrossRefGoogle Scholar
  97. 97.
    Greene JE, Sundgren J-E, Hultman L, Petrov I, Bergstrom DB (1995) Development of preferred orientation in polycrystalline TiN layers grown by ultra high vacuum reactive magnetron sputtering. Appl Phys Lett 67(20):2928–2930CrossRefGoogle Scholar
  98. 98.
    Zeitler M, Gerlach JW, Kraus T, Rauschenbach B (1997) Evolution of texture at growth of titanium nitride films prepared by photon and ion beam assisted deposition. Appl Phys Lett 70(10):1254–1256CrossRefGoogle Scholar
  99. 99.
    Hultman L, Munz W-D, Musil J, Kadlec S, Petrov I, Greene JE (1991) Low energy ion irradiation during growth of TiN deposited by reactive magnetron sputtering: effects of ion flux on film microstructure. J Vac Sci Technol A 9(3):434–438CrossRefGoogle Scholar
  100. 100.
    Ensinger W (1997) Low energy ion assist during deposition - an effective tool for controlling thin film microstructure. Nuclear Instruments & Methods in Physics Research B 127/128:796–808CrossRefGoogle Scholar
  101. 101.
    Mitamura Y, Mikami T, Yuta T, Matsumoto T, Shimooka T, Okamoto E, Eizuka N, Yamaguchi K (1986) Development of a fine ceramic heart valve for use as a cardiac prosthesis. Transactions of the American Society of Artificial Internal Organs 32:444–448CrossRefGoogle Scholar
  102. 102.
    Mezger PR, Creugers NHJ (1992) Titanium nitride coatings in clinical dentistry. J Dent 20:342–344CrossRefGoogle Scholar
  103. 103.
    Behrndt H, Lunk A (1991) Biocompatibility of TiN; preclinical & clinical investigations. Mater Sci Eng A 139:58–60CrossRefGoogle Scholar
  104. 104.
    Knotek O, Loffler F, Weitkamp K (1992) Physical vapour deposition coatings for dental prostheses. Surf Coat Technol 54/55:536–540CrossRefGoogle Scholar
  105. 105.
    Kola PV, Daniels S, Cameron DC, Hashmi MSJ (1996) Magnetron sputtering of TiN protective coatings for medical applications. J Mater Process Technol 56:422–430CrossRefGoogle Scholar
  106. 106.
    Wisbey A, Gregson PJ, Tuke M (1987) Application of PVD TiN coating to Co-Cr-Mo based surgical implants. Biomaterials 8:477–480CrossRefGoogle Scholar
  107. 107.
    Mishra AK, Davidson JA (1992) Abrasion resistance of candidate coatings for orthopaedic articulating surfaces. Advances in Biomaterials 10:111–121Google Scholar
  108. 108.
    Grant DM, Lo WJ, Parker KG, Parker TL (1996) Biocompatible and mechanical properties of low temperature deposited quarternary (Ti,A1,V)N coatings on Ti-6A1-4V titanium alloy substrates. J Mater Sci: Mater Med 7:579–584CrossRefGoogle Scholar
  109. 109.
    Dion I, Bordenave L, Lefebvre E, Bareille R, Baquey Ch, Monties JR, Havlik P (1994) Physico-chemistry and cytotoxicity of ceramics part II: cytotoxicity of ceramics. J Mater Sci: Mater Med 5:18–24CrossRefGoogle Scholar
  110. 110.
    Allen M, Law F, Rushton N (1994) Effects of DLC coatings on macrophages, fibroblasts and osteoblast-like cells in vitro. Clinical Materials 17:1–10CrossRefGoogle Scholar
  111. 111.
    Lu L, Jones MW, Wu RLC (1993) DLC as a biological compatible material for cell culture and medical applications. Biomed Mater Eng 3(4):223–228Google Scholar
  112. 112.
    Evans AC, Franks J, Revell PJ (1991) Diamond-like carbon applied to bioengineering materials. Medical Device Technology, May, 26–29Google Scholar
  113. 113.
    Parker TL, Parker KG, McColl IR, Grant DM, Wood JV (1994) Biocompatibility of low temperature diamond-like carbon films: a transmission electron microscopy, scanning electron microscopy and cytotoxicity study. Diamond & Related Materials 3:1120–1123CrossRefGoogle Scholar
  114. 114.
    Butter R, Allen M, Chandra L, Lettington AH, Rushton N (1995) In vitro studies of DLC coatings with silicon intermediate layer. Diamond & Related Materials 4:857–861CrossRefGoogle Scholar
  115. 115.
    McColl IR, Grant DM, Green SM, Wood JV, Parker TL, Parker K, Goruppa AA, Braithwaite NStJ (1993) Low temperature plasma-assisted chemical vapour deposition of amorphous carbon films for biomedical polymeric substrates. Diamond & Related Materials 3:83–87CrossRefGoogle Scholar
  116. 116.
    Thompson LA, Law FC, Rushton N, Franks J (1991) Biocompatibility of diamond-like carbon coating. Biomaterials 12:37–40CrossRefGoogle Scholar
  117. 117.
    Grant DM, McColl IR, Golozar MA, Wood JV, Braithwaite NStJ (1992) Plasma assisted CVD for biomedical applications. Diamond & Related Materials 1:727–730CrossRefGoogle Scholar
  118. 118.
    Olborska A, Swider M, Wolowiec R, Niedzielski A, Rylski A, Mitura S (1994) Amorphous carbon - biomaterial for implant coatings. Diamond & Related Materials 3:899–901CrossRefGoogle Scholar
  119. 119.
    Mitura E, Mitura S, Niedzielski A, Has Z, Wolowiec R, Jakubowski A, Szmidt J, Sokolowska A, Louda P, Marciniak J, Koczy B (1994) Diamond-like carbon coatings for biomedical applications. Diamond & Related Materials 3:896–898CrossRefGoogle Scholar
  120. 120.
    Ianno NJ, Dillon RO, Ali A, Ahmad A (1995) Deposition of diamond-like carbon on a titanium biomedical alloy. Thin Solid Films 270:275–278CrossRefGoogle Scholar
  121. 121.
    Lankford J, Blanchard CR, Agrawal CM, Micallef DM, Dearnaley G, McCabe AR (1993) Adherence of diamondlike carbon coatings on total joint substrate materials. Nuclear Instruments & Methods in Physics Research Sect B - Beam Interactions with Materials & Atoms B80/81:1441–1445CrossRefGoogle Scholar
  122. 122.
    Chandra L, Allen M, Butter R, Rushton N, Lettington AH, Clyne TW (1995) The effect of exposure to biological fluids on the spallation resistance of diamond-like coatings on metallic substrates. J Mater Sci: Mater Med 6:581–589CrossRefGoogle Scholar
  123. 123.
    McLaughlin J, Meenan B, Maguire P, Jamieson N (1996) Properties of diamond-like carbon thin film coatings on stainless steel medical guidewires. Diamond & Related Materials 5:486–491CrossRefGoogle Scholar
  124. 124.
    Dion I, Baquey C, Candelon B, Monties JR (1992) Haemocompatibility of titanium nitride. International Journal of Artificial Organs 15(10):617–621Google Scholar
  125. 125.
    Dion I, Roques X, Baquey Ch, Baudet E, Basse Cathalinat B, More N (1993) Haemocompatibility of diamond-like carbon coating. Biomed Mater Eng 3:51–55Google Scholar
  126. 126.
    Ran JG, Zheng CQ, Yin GF, Lei W (1994) Evaluation of multi factors on blood compatibility of diamond-like carbon films used as AHV’s materials. Transactions of the Materials Research Society of Japan 15A:29–32Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Roger Thull
    • 1
  • David Grant
    • 2
  1. 1.Universität WürzburgUniversitätsklinikWürzburgGermany
  2. 2.School of Mechanical, Materials and Manufacturing EngineeringUniversity of NottinghamNottinghamUK

Personalised recommendations