Skip to main content

The Turing Machine Paradigm in Contemporary Computing

  • Chapter

Abstract

The importance of algorithms is now recognized in all mathematical sciences, thanks to the development of computability and computational complexity theory in the 20th century. The basic understanding of computability theory developed in the nineteen thirties with the pioneering work of mathematicians like Gödel, Church, Turing and Post. Their work provided the mathematical basis for the study of algorithms as a formalized concept. The work of Hartmanis, Stearns, Karp, Cook and others in the nineteen sixties and seventies showed that the refinement of the theory to resource-bounded computations gave the means to explain the many intuitions concerning the complexity or ‘hardness’ of algorithmic problems in a precise and rigorous framework.

This research was partially supported by GA ČR grant No. 201/98/0717 and by EC Contract IST-1999-14186 (Project ALCOM-FT).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-56478-9_59
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-56478-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Abelson, D. Allen, D. Coore, C. Hansen, G. Homsy, T. F. Knight Jr, R. Nagpal, E. Rauch, G. J. Sussman, R. Weiss: Amorphous computing. Comm. ACM 43 5 (2000) 74–82

    CrossRef  Google Scholar 

  2. L. Adleman: Two theorems on random polynomial time. In: Proc. 19th Ann. IEEE Symp. Foundations of Computer Science (FOCS’78), 1978, pp. 75–83

    Google Scholar 

  3. I. Antoniou et al.: Future themes in theoretical computer science - Conclusions from a discussion meeting. Bulletin of the EATCS, Nr. 71, June 2000, pp. 8–14

    Google Scholar 

  4. H. Attiya, J. Welch: Distributed computing: fundamentals, simulations and advanced topics. McGraw-Hill, London 1998

    MATH  Google Scholar 

  5. J. L. Balcázar, J. Díaz, J. Gábarro: Structural complexity, Vol. I, 2nd edn. Springer, Berlin 1995

    CrossRef  MATH  Google Scholar 

  6. J. L. Balcazar, M. Hermo: The structure of logarithmic advice complexity classes. Theor. Comput. Sci. 207 (1998) 217–244

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. L. Blum, F. Cucker, M. Shub, S. Smale: Complexity of real computation. Springer, New York, NY 1998

    CrossRef  MATH  Google Scholar 

  8. E. Börger: Computability, complexity and logic. Studies in Logic and the Foundation of Mathematics, vol. 128. North-Holland, Elsevier, Amsterdam 1989

    Google Scholar 

  9. L. Cardelli: Global computation. ACM Sigplan Notices 32 1 (1997) 66–68

    CrossRef  Google Scholar 

  10. K.M. Chandy, J. Misra: Parallel program design: a foundation. Addison-Wesley, Reading, Mass. 1988

    MATH  Google Scholar 

  11. B. Cipra: Revealing uncertainties in computer models. Science 287 (2000) 960–961

    CrossRef  Google Scholar 

  12. B.J. Copeland: The Church-Turing thesis. In: E.N. Zalta, Stanford Encyclopedia of Philosophy Center for the Study of Language and Information (CSLI), Stanford University, Stanford, CA, http://plato.stanford.edu/entries/church-turing/, 1997

    Google Scholar 

  13. B.J. Copeland, D. Proudfoot: Alan Turing’s Forgotten Ideas in Computer Science. Scientific American April 1999, p. 77–81

    Google Scholar 

  14. D. Deutsch: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. London A 400 (1985) 96–117

    MATH  MathSciNet  Google Scholar 

  15. H. B. Enderton: Elements of recursion theory. In: J. Barwise (ed.) Handbook of Mathematical Logic North-Holland, Elsevier, Amsterdam 1977, Chapter C.1, pp. 527–566

    CrossRef  Google Scholar 

  16. I. Foster, C. Kesselman: The grid: blueprint for a new computing infrastructure Morgan-Kaufmann, San Francisco, CA 1998

    Google Scholar 

  17. D. Q. Goldin: Persistent Turing machines as a model of interactive computation. In: K.-D. Schewe, B. Thalheim (eds.) Foundations of Information and Knowledge Systems Proc. First Int. Symposium (FoIKS 2000), Lecture Notes in Computer Science, vol. 1762. Springer, Berlin 2000, pp. 116–135

    CrossRef  Google Scholar 

  18. J. E. Hopcroft, J. D. Ullman: Introduction to Automata Theory, Languages, and Computation Addison-Wesley, Reading, Mass. 1979

    MATH  Google Scholar 

  19. R. M. Karp, R. J. Lipton: Some connections between nonuniform and uniform complexity classes. In: Proc. 12th Annual ACM Symposium on the Theory of Computing (STOC’80), 1980, pp. 302–309

    Google Scholar 

  20. N. A. Lynch: Distributed algorithms. Morgan Kaufmann, San Francisco, CA 1996

    MATH  Google Scholar 

  21. R. Milner: A calculus of communicating systems. Lecture Notes in Computer Science, vol. 92. Springer, Berlin 1980

    CrossRef  Google Scholar 

  22. R. Milner: Elements of interaction. Comm. ACM 36 1 (1993) 78–89

    CrossRef  MathSciNet  Google Scholar 

  23. M. L. Minsky: Computation: finite and infinite machines Prentice-Hall, Englewood Cliffs, NJ 1969

    Google Scholar 

  24. B. Molzan: Expressibility and nonuniform complexity classes. SIAM J. Comput. 19 (1990)411–423

    CrossRef  MATH  MathSciNet  Google Scholar 

  25. B. M. Moret: The theory of computation Addison-Wesley, Reading, Mass. 1998

    Google Scholar 

  26. P. Odifreddi: Classical recursion theory - The theory ofjunctions and sets of natural numbers. North-Holland, Elsevier, Amsterdam 1989

    Google Scholar 

  27. N. Pippenger: On simultaneous resource bounds. In: Proc. 20th Ann. IEEE Symp. Foundations of Computer Science (FOCS’79), 1979, pp. 307–311

    Google Scholar 

  28. A. Pnueli: Applications of temporal logic to the specification and verification of reactive systems: a survey of current trends. In: J. W. de Bakker, W.-P. de Roever, G. Rozenberg (eds.) Current Trends in Concurrency. Lecture Notes in Computer Science, vol. 224. Springer, Berlin 1986, pp. 510–585

    CrossRef  Google Scholar 

  29. A. Pnueli: Specification and development of reactive systems. In: H.-J. Kugler (ed.), Information Processing 86. Proceedings IFIP 10th World Computer Congress. Elsevier Science Publishers, North-Holland, Amsterdam 1986, pp. 845–858

    Google Scholar 

  30. M. B. Pour-El: The Structure of computability in analysis and physical theory: an extension of Church’s thesis. In: E. R. Griffor (ed.) Handbook of Computability Theory, Studies in Logic and the Foundation of Mathematics, vol. 150. Elsevier, Amsterdam 1999, Chapter 13, pp. 449–471

    Google Scholar 

  31. M. Prasse, P Rittgen: Why Church’s Thesis still holds. Some notes on Peter Wegner’s tracts on interaction and computability. The Computer Journal 41 (1998) 357–362

    CrossRef  MATH  Google Scholar 

  32. P. Pudlák: Complexity theory and genetics. Structure in Complexity Theory, Proc. Ninth Annual Conference. IEEE Computer Society Press, Los Alamitos, CA 1994, pp. 383–395

    Google Scholar 

  33. H. Rogers: Theory of recursive functions and effective computability. McGraw-Hill, New York 1967

    MATH  Google Scholar 

  34. J. E. Savage: Models of computation: exploring the power of computing. Addison-Wesley, Reading, Mass. 1998

    Google Scholar 

  35. U. Schöning: On small generators. Theor. Comput. Sei. 34 (1984) 337–341

    CrossRef  MATH  MathSciNet  Google Scholar 

  36. U. Schöning: Complexity theory and interaction. In: R. Herken (ed.) The universal Turing machine-A half-century survey. Oxford University Press, Oxford 1988, pp. 561–580

    Google Scholar 

  37. J. C. Shepherdson: Mechanisms for computing over arbitrary structures. In: R. Herken (ed.) The universal Turing machine - A half-century survey. Oxford University Press, Oxford 1988, pp. 581–601

    Google Scholar 

  38. H. T. Siegelmann: Computations beyond the Turing limit. Science 268 (1995) 545–548

    CrossRef  Google Scholar 

  39. L. Staiger: ω-Languages. In: G. Rozenberg, A. Salomaa (eds.)Handbook of Formal Languages vol. 3: Beyond Words Chapter 6. Springer, Berlin 1997, pp. 339–387

    CrossRef  Google Scholar 

  40. G. Tel: Introduction to distributed algorithms. Cambridge University Press, Cambridge (UK) 1994

    CrossRef  MATH  Google Scholar 

  41. W. Thomas: Automata on infinite objects. In: J. van Leeuwen (ed.) Handbook of Theoretical Computer Science Vol. B: Models and Semantics. Elsevier, Amsterdam 1990, pp. 135–191

    Google Scholar 

  42. W. Thomas: Languages, automata, and logic: In: G. Rozenberg, A. Salomaa (eds.) Handbook of Formal Languages, Vol. 3: Beyond Words Chapter 7. Springer, Berlin 1997, pp. 389–455

    CrossRef  Google Scholar 

  43. A.M. Turing: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc 42 2 (1936) 230–265; A correction, ibid., 43 (1937) 544–546

    MATH  MathSciNet  Google Scholar 

  44. A. M. Turing: Systems of logic based on ordinals. Proc. London Math. Soc. Series 2 45(1939) 161–228

    CrossRef  MATH  MathSciNet  Google Scholar 

  45. A. M. Turing: Computing machinery and intelligence. Mind 59 (1950) 433–460

    CrossRef  MathSciNet  Google Scholar 

  46. P. van Emde-Boas: Machine models and simulations. In: J. van Leeuwen (ed.) Handbook of Theoretical Computer Science Vol. A: Algorithms and Complexity. Elsevier, Amsterdam 1990, pp. 3–66

    Google Scholar 

  47. J. van Leeuwen, J. Wiedemann: On algorithms and interaction. In: M. Nielsen and B. Rovan (eds.) Mathematical Foundations of Computer Science 2000, 25th Int. Symposium (MFCS 2000), Lecture Notes in Computer Science, vol. 1893. Springer, Berlin 2000, pp. 99–113

    CrossRef  Google Scholar 

  48. J. van Leeuwen, J. Wiedemann: Breaking the Turing barrier: the case of the Internet, Techn. Report, Inst, of Computer Science, Academy of Sciences of the Czech Rep., Prague 2000

    Google Scholar 

  49. P. Wegner: Why interaction is more powerful than algorithms. Comm. ACM 40 (1997) 80–91

    CrossRef  Google Scholar 

  50. P. Wegner: Interactive foundations of computing. Theor. Comp. Sei. 192 (1998) 315–351

    CrossRef  MATH  MathSciNet  Google Scholar 

  51. P. Wegner, D. Q. Goldin: Interaction, computability, and Church’s thesis. The Computer Journal 2000 (to appear)

    Google Scholar 

  52. J. Wiedemann: The computational limits to the cognitive power of neuroidal tabula rasa. In: O. Watanabe, T. Yokomori (eds.) Algorithmic Learning Theory Proc. 10th International Conference (ALT’99), Lecture Notes in Artif. Intelligence, vol. 1720. Springer, Berlin 1999, pp. 63–76

    CrossRef  Google Scholar 

  53. C. K. Yap: Some consequences of non-uniform conditions on unifom classes. Theor. Comput. Sei. 26 (1983) 287–300

    CrossRef  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Leeuwen, J., Wiedermann, J. (2001). The Turing Machine Paradigm in Contemporary Computing. In: Engquist, B., Schmid, W. (eds) Mathematics Unlimited — 2001 and Beyond. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56478-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56478-9_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63114-6

  • Online ISBN: 978-3-642-56478-9

  • eBook Packages: Springer Book Archive