Skip to main content

A Chapter in Physical Mathematics: Theory of Knots in the Sciences

  • Chapter
Mathematics Unlimited — 2001 and Beyond

Abstract

In the last twenty years a body of mathematics has evolved with strong direct input from theoretical physics, for example from classical and quantum field theories, statistical mechanics and string theory. In particular, in the geometry and topology of low dimensional manifolds (i.e. manifolds of dimensions 2, 3 and 4) we have seen new results, some of them quite surprising, as well as new ways of looking at known results. Donaldson’s work based on his study of the solution space of the Yang-Mills equations, Monopole equations of Seiberg-Witten, Floer homology, quantum groups and topological quantum field theoretical interpretation of the Jones polynomial and other knot invariants are some of the examples of this development. Donaldson, Jones and Witten have received Fields medals for their work [4]. We think the name “Physical Mathematics” is appropriate to describe this new, exciting and fast growing area of mathematics. Recent developments in knot theory make it an important chapter in “Physical Mathematics”. Untill the early 1980s it was an area in the backwaters of topology. Now it is a very active area of research with its own journal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Adams: The Knot Book. Freeman, New York 1994

    MATH  Google Scholar 

  2. K. Appel and W. Haken: The solution of the four-color-map problem. Sci. Amer. (Sept. 1977) 108–121

    Google Scholar 

  3. M. Atiyah: The Geometry and Physics of Knots. Cambridge University Press, Cambridge 1990

    Book  MATH  Google Scholar 

  4. M. Atiyah and D. Iagolnitzer (eds.): Fields Medalists’ Lectures. World Scientific and Singapore University, Singapore 1997

    Google Scholar 

  5. M. F. Atiyah: On Framings of 3-Manifolds. Topology 29, 1–7 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Axelrod et al.: Geometric Quantization of Chern-Simons Gauge Theory. J. Diff. Geom. 33, 787–902 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Cotta-Ramusino et al.: Quantum Field Theory and Link Invariants. Nuc. Phy. 330B, 557–574 (1990)

    Article  MathSciNet  Google Scholar 

  8. L. Crane: 2-d physics and 3-d topology. Comm. Math. Phys. 135, 615–640 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Dietrich-Buchecker and J.-P. Sauvage: A synthetic molecular trefoil knot. Angew. Chem. 28 (1989)

    Google Scholar 

  10. E. Flapan: When Topology Meets Chemistry. Cambridge University Press, Cambridge 2000

    Book  MATH  Google Scholar 

  11. R. Freyd et al.: A new polynomial invariant of knots and links. Bull. Amer. Math. Soc. (N.S.) 12, 239–246 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Frohman and A. Nicas: The Alexander polynomial via topological quantum field theory. In Differential Geometry; Global Analysis and Topology. Can. Math. Soc. Conf. Proc., vol. 12. Am. Math. Soc., Providence 1992, pp. 27–40

    Google Scholar 

  13. E. Guadagnini et al.: Wilson Lines in Chern-Simons Theory and Link Invariants. Nuc. Phy. 330B, 575–607 (1990)

    Article  MathSciNet  Google Scholar 

  14. W. Haken: Theorie der Normalflachen. Acta Math. 105, 245–375 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Hoste, M. Thistlewaite, and J. Weeks: The First 1,701,936 Knots. Math. Intelligencer 20, no. 4, 33–48 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. V. Jones: On knot invariants related to some statistical mechanical models. Pac. J. Math. 137, 311–334(1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. V. F. R. Jones: A Polynomial Invariant for Knots via von Neumann Algebras. Bull. Amer. Math. Soc. 2, 103–111 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. V. F. R. Jones: Hecke Algebra Representations of Braid Groups and Link Polynomials. Ann. Math. 126, 335–388 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Kauffman: State Models and the Jones Polynomial. Topology 26, 395–407 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Louis H. Kauffman: Knots and Physics. Series on Knots and Everything, vol. 1. World Scientific, Singapore 1991

    MATH  Google Scholar 

  21. R. Kirby and P. Melvin: Evaluation of the 3-manifold invariants of Witten and Reshetikhin-Turaev. In: S. K. Donaldson and C. B. Thomas (eds.) Geometry of Low-dimensional Manifolds, volume II, Lect. Notes #151. London Math. Soc., London 1990, pp. 101–114

    Google Scholar 

  22. A. N. Kirillov and N. Y. Reshetikhin: Representations of the algebra U q (SL(2, C)) q -orthogonal polynomials and invariants of links. In: V. G. Kac (ed.) Infinite Dimensional Lie Algebras and Groups. World Scientific, Singapore 1988, pp. 285–339

    Google Scholar 

  23. T. Kohno: Topological invariants for three manifolds using representations of the mapping class groups I. Topology 31, 203–230 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Kontsevich: Feynman Diagrams and Low-Dimensional Topology. In: First European Cong. Math., vol. II. Progr. in Math., # 120. Birkháuser, Basel 1994, pp. 97–121

    Google Scholar 

  25. R. Lawrence and D. Zagier: Modular forms and quantum invariants of 3-manifolds. Asian J. Math. 3, 93–108 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. K. B. Marathe and G. Martucci: The Mathematical Foundations of Gauge Theories. Studies in Mathematical Physics, vol. 5. North-Holland, Amsterdam 1992

    MATH  Google Scholar 

  27. K. B. Marathe, G. Martucci, and M. Francaviglia: Gauge Theory, Geometry and Topology. Seminario di Matematica dell’Università di Bari 262, 1–90 (1995)

    MATH  Google Scholar 

  28. S. Piunikhin: Reshetikhin-Turaev and Kontsevich-Kohno-Crane 3-manifold invariants coincide. J. Knot Theory 2, 65–95 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. N. Reshetikhin and V. G. Turaev: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. W. Thurston: Geometry and topology of 3-manifolds. Mimeographed Lect. Notes. Princeton University, Princeton, 1979

    Google Scholar 

  31. V. G. Turaev: The Yang-Baxter equation and invariants of link. Invent. Math. 92, 527–553 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. V. G. Turaev and O. Y. Viro: State sum invariants of 3-manifolds and quantum 6j-symbols. Topology 31, 865–895 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. V. Vasiliev: Cohomology of knot spaces. In: V. I. Arnold (ed.)Theory of Singularities and its Applications. Adv. Sov. Math. # 1. Amer. Math. Soc., 1990, pp. 23–70

    Google Scholar 

  34. E. Verlinde: Fusion rules and modular transformations in 2d conformai field theory. Nucl. Phys. B300, 360–376 (1988)

    MATH  Google Scholar 

  35. J. Wang: DNA Topoisomerases. Annual Rev. Biochem. 65, 635–692 (1996)

    Article  Google Scholar 

  36. E. Witten: Quantum Field Theory and the Jones Polynomial. Comm. Math. Phys. 121, 359–399 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  37. E. Yakubovskaya and A. Gabibov: Topoisomerases: Mechanisms of DNA topological alterations. Molecular Bio. 33, 318–332 (1999)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marathe, K.B. (2001). A Chapter in Physical Mathematics: Theory of Knots in the Sciences. In: Engquist, B., Schmid, W. (eds) Mathematics Unlimited — 2001 and Beyond. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56478-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56478-9_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63114-6

  • Online ISBN: 978-3-642-56478-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics