Advertisement

A Survey on Parameter Extraction Techniques for Coupling Electromagnetic Devices to Electric Circuits

  • I. Munteanu
  • D. Ioan
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 18)

Abstract

The paper presents an overview of the state-of-the-art in the field of parameter extraction of electromagnetic devices. A classification of the most used system identification and reduction techniques is presented, together with algorithmic details.

Keywords

Transfer Matrix Krylov Subspace Circuit Element Parameter Extraction Electromagnetic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mafia Manual Version 4.00. CST, Darmstadt, Germany (1997)Google Scholar
  2. 2.
    Special issue on interconnects and packaging. Microwave Theory and Techniques, Vol. 45, No. 10, Part II (1997)Google Scholar
  3. 3.
    Achar, R., Gunupudi, P. K., Nakhla, M., Chiprout, E.: Passive interconnect reduction algorithm for distributed/measured networks. IEEE Trans. Circ. Syst. II 47 (2000) 287–301CrossRefGoogle Scholar
  4. 4.
    Anderson, B. D. O., Vongpanitlerd, S.: Network Analysis and Synthesis. Prentice-Hall, Englewood Cliffs (1973)Google Scholar
  5. 5.
    Bai, Z., Feldmann, P., Freund, R. W.: Stable and passive reduced-order models based on partial Padé approximation via the Lanczos process. Numerical Analysis Manuscript 97-3-10 Bell Laboratories (1997). URL http://cm.bell-labs.com/cm/cs/doc/97/3-10.ps.gz
  6. 6.
    Borchers, C.: Symbolic behavioral model generation of nonlinear analog circuits. IEEE Trans. Circ. Syst. II 45 (1998) 1362–1371CrossRefGoogle Scholar
  7. 7.
    Bracken, J. E., Sun, D.-K., Cendes, Z. J.: S-domain methods for simultaneous time and frequency characterization of electromagnetic devices. IEEE Trans. Microwave Theory Tech. 46 (1998) 1277–1290CrossRefGoogle Scholar
  8. 8.
    Cangellaris, A. C, Zhao, L.: Rapid FDTD simulation without time stepping. IEEE Microwave Guided Wave Lett. 9 (1999) 4–6CrossRefGoogle Scholar
  9. 9.
    Celik, M., Ocali, O., Tan, M. A.: Pole-zero computation in microwave circuits using multipoint Padé approximation. IEEE Trans. Computer-Aided Design Integrated Circ. and Sys. 42 (1995) 6–13Google Scholar
  10. 10.
    Chiprout, E.: Interconnect and substrate modeling and analysis: An overview. IEEE J. Solid-State Circ. 33 (1998) 1445–1452CrossRefGoogle Scholar
  11. 11.
    Cho, Y., Xu, G., Kailath, T.: Fast identification of state-space models via exploitation of displacement structure. IEEE Trans. AC 26 (1994) 2004–2017MathSciNetGoogle Scholar
  12. 12.
    Choi, K. L., Swaminathan, M.: Development of model libraries for embedded passives using network synthesis. IEEE Trans. Circ. Syst. II 47 (2000) 249–260CrossRefGoogle Scholar
  13. 13.
    Cullum, J., Ruehli, A., Zhang, T.: A method for reduced-order modelling and simulation of large interconnect circuits and its application to PEEC models with retardation. IEEE Trans. Circ. Syst. II 47 (2000) 261–273CrossRefGoogle Scholar
  14. 14.
    De Moor, B., Van Overschee, P., Favoreel, W.: Numerical algorithms for subspace state space system identification — An overview. Internal Report 97–93 ESAT-SISTA, K. U. Leuven Leuven, Belgium (1995)Google Scholar
  15. 15.
    Elfadel, I. M., Silveira, L. M., White, J.: Stability criteria for Arnoldi-based model-order reduction. In Proc. of IEEE Conference on Acoustics, Speech and Signal Proc. ICASSP’96 volume 5 Atlanta, GA, USA (1996) 2642–2644Google Scholar
  16. 16.
    Elias, P. J. H., van der Meijs, N. P.: Extracting circuit models for large RC interconnections that are accurate up to a predefined signal frequency. In Proc. of 33rd Design Automation Conference Las Vegas, NV, USA (1996)Google Scholar
  17. 17.
    Feldmann, P., Freund, R. W.: Efficient linear circuit analysis by Padé approximation via the Lanczos process. IEEE Trans. Computer-Aided Design 14 (1995) 639–649CrossRefGoogle Scholar
  18. 18.
    Freund, R. W.: Passive reduced-order models for interconnect simulation and their computation via Krylov-subspace algorithms. In Proc. of 36th Design Automation Conference DAC99 New Orleans, LA, USA (1999) 195–200Google Scholar
  19. 19.
    Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L∞-error bounds. Int. J. Control 38 (1984) 1115–1193MathSciNetCrossRefGoogle Scholar
  20. 20.
    Goel, A. K.: High-Speed VLSI Interconnections: Modeling, Analysis and Simulation. A Wiley-Interscience Publication, John Wiley & sons, Inc. (1994)Google Scholar
  21. 21.
    Golub, G. H., Loan, C. F. V.: Matrix computations. The Johns Hopkins University Press, Baltimore (1996) 3 editionGoogle Scholar
  22. 22.
    Guillemin, E. A.: Theory of Linear Physical Systems. John Wiley and Sons, Inc., New York, London (1963)MATHGoogle Scholar
  23. 23.
    Gunupudi, P. K., Nakhla, M. S.: Model-reduction of nonlinear circuits using Krylov subspace techniques. In Proc. of 36th Design Automation Conference DAC99 New Orleans, LA, USA (1999) 13–16Google Scholar
  24. 24.
    Ho, C.-W., Ruehli, A. E., Brennan, P. A.: The modified nodal approach to network analysis. IEEE Trans. Circ. Syst. CAS-22 (1975) 504–509Google Scholar
  25. 25.
    Hănţilă, F., loan, D.: Voltage-current relation of circuit elements with field effects. In 6th International IGTE Symposium Graz, Austria (1994) 41–46Google Scholar
  26. 26.
    loan, D., Munteanu, I.: Missing link rediscovered: The electromagnetic circuit element concept. JSAEM Studies in Applied Electromagnetics and Mechanics 8 (1999) 302–320Google Scholar
  27. 27.
    loan, D., Munteanu, I., Popeea, C.: Capacitive effects models for a magnetic field sensor. COMPEL, Int. J. Comput. Math. Electr. Electron. Eng. 18 (1999) 525–537Google Scholar
  28. 28.
    Kamon, M., Wang, F., White, J.: Generating nearly optimally compact models from Krylov-subspace based reduced order models. IEEE Trans. Circ. Syst. II 47 (2000) 239–248CrossRefGoogle Scholar
  29. 29.
    Kerns, K. J., Yang, A. T.: Stable and efficient reduction of large, multiport RC networks by pole analysis via congruence transformation. In Proc. of 33rd Design Automation Conference Las Vegas, NV, USA (1996)Google Scholar
  30. 30.
    Kuh, E. S., Pederson, D. O.: Principles of Circuit Synthesis. McGraw-Hill Book Company, Inc., New York, Toronto, London (1959)Google Scholar
  31. 31.
    Ljung, L.: System Identification: Theory for the User. Prentice Hall Information and System Sciences Series (1999)Google Scholar
  32. 32.
    Moore, B. C.: Principal component analysis in linear systems controlability, observability and model reduction. IEEE Trans. AC 25 (1991) 17–32Google Scholar
  33. 33.
    Munteanu, I.: Two uniqueness theorems for electromagnetic field computation in domains with absorbing boundary conditions. Rev. Roum. Sci. Techn. Electrotechn. Energ. 42 (1997) 321–336Google Scholar
  34. 34.
    Munteanu, I., Wittig, T., Weiland, T., loan, D.: FIT/PVL circuit-parameter extraction for general electromagnetic devices. IEEE Trans. Magn. 36 Google Scholar
  35. 35.
    Odabasioglu, A., Celik, M., Pileggi, L. T.: PRIMA: Passive reduced-order interconnect macromodelling algorithm. In Int. Conf. on Computer-Aided Design San Jose, California (1997) 58–65Google Scholar
  36. 36.
    Pillage, L. T., Rohrer, R. A.: Asymptotic waveform evaluation for timing analysis. IEEE Trans, on CAD 9 (1990) 352–366Google Scholar
  37. 37.
    Răduleţ, R., Timotin, A., Tugulea, A.: Introduction of transient parameters in the study of linear electric circuits with non-filamentary elements and supplementary losses (in Romanian language). St. cerc, energ. electr. 16 (1966) 857–929Google Scholar
  38. 38.
    Schefelhout, G., De Moor, B.: Frequency weighted H 2 and Hilbert-Schmidt-Hankel model reduction. In Proc. 33rd IEEE Conf. on Decision Control Lake Buena Vista, Florida, USA (1994) 3215–3216Google Scholar
  39. 39.
    Silveira, L. M., Kamon, M., Elfadel, I., White, J.: A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of arbitrary RLC circuits. In Proc. International Conference on Computer Aided Design of IC San Jose, California, USA (1996)Google Scholar
  40. 40.
    Silveira, L. M., Kamon, M., White, J.: Efficient reduced-order modeling of frequency-dependent coupling inductances associated with 3-D interconnect structures. In Proc. 32nd Design Automation Conference San Francisco, California, USA (1995) 376–380Google Scholar
  41. 41.
    Soderstrom, T., Stoica, P.: Instrumental variable methods for systems identification. Springer-Verlag, New York (1983)CrossRefGoogle Scholar
  42. 42.
    Tellegen, B. D. H.: Synthesis of 2n-poles by networks containing the minimum number of elements. J. Math. Phys. 32 (1953) 1–18MathSciNetMATHGoogle Scholar
  43. 43.
    Timotin, A.: The passive electromagnetic circuit element (in Romanian language). St. cerc, energ. electr. 21 (1971) 347–362Google Scholar
  44. 44.
    Van Overschee, P., De Moor, B.: Continuous-time frequency domain subspace system identification and stochastic realization. In Proc. 13th IFAC World Congress San Francisco, California (1996) 157–162Google Scholar
  45. 45.
    Subspace Identification for Linear Systems; Theory, Implementation, Applications. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  46. 46.
    Wang, D., Zilouchian, A.: Model reduction of discrete linear systems via frequency-domain balanced structure. IEEE Trans. Circ. Syst. I 47 (2000) 830–837MathSciNetGoogle Scholar
  47. 47.
    Weinberg, L.: Network Analysis and Synthesis. McGraw-Hill Book Company, Inc., New York, Toronto, London (1962)Google Scholar
  48. 48.
    Wittig, T.: Implementierung eines Filtersyntheseverfahrens zur Weiterverarbeitung numerischer Simulationsergebnisse. Diplomarbeit D 179 Technische Universität Darmstadt, Fachbereich Theorie elektromagnetischer Felder (1998)Google Scholar
  49. 49.
    You, E., Varadadesikan, L., MacDonald, J., Xie, W.: A practical approach to parasitic extraction for design of multimillion-transistor integrated circuits. In Proc. of 37th Design Automation Conference DAC99 Los Angeles, CA, USA (2000) 69–74Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • I. Munteanu
    • 1
    • 2
  • D. Ioan
    • 1
  1. 1.“Politehnica” UniversityBucharestRomania
  2. 2.Darmstadt University of TechnologyGermany

Personalised recommendations