Skip to main content

Literaturverzeichnis

  • Chapter
Verbrennung

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Abdel-Gayed RG, Bradley D, Hamid NM, Lawes M (1984) Lewis number effects on turbulent burning velocity. Proc Comb Inst 20:505

    Google Scholar 

  • Ackermann J, Wulkow M (1990) MACRON — A Program Package for Macromolecular Kinetics. Konrad-Zuse-Zentrum Berlin, Preprint SC-90-14

    Google Scholar 

  • Alkemade V, Homann KH (1989) Formation of C6H6 isomers by recombination of propynyl in the system sodium vapour/propynylhalide. Z Phys Chem NF 161:19

    Article  Google Scholar 

  • Amsden AA, O’Rourke PJ, Butler TD (1989) KIVA II: A computer program for chemically reactive flows with sprays. LA-11560-MS, Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  • Aouina Y (1997) Modellierung der Tropfen verbrennung unter Einbeziehung detaillierter Reaktionsmechanismen. Dissertation, Universität Stuttgart

    Google Scholar 

  • Ans R (1962) Vectors, tensors, and the basic equations of fluid mechanics. Prentice Hall, New York

    Google Scholar 

  • Arnold A, Becker H, Hemberger R, Hentschel W, Ketterle W, Köllner M, Meienburg W, Monkhouse P, Neckel H, Schäfer M, Schindler KP, Sick V, Suntz R, Wolfrum J (1990a) Laser in situ monitoring of combustion processes. Appl Optics 29:4860

    Article  Google Scholar 

  • Arnold A, Hemberger R, Herden R, Ketterle W, Wolfrum J (1990b) Laser stimulation and observation of ignition processes in CH3OH-O2-mixtures. Proc Comb Inst 23:1783

    Google Scholar 

  • Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Phys Chem 4:226

    Google Scholar 

  • Ashurst WT (1995) Modeling turbulent flame propagation. Proc Comb Inst 25:1075

    Google Scholar 

  • Atkins PW (1996) Physical chemistry, 5th ed. Freeman, New York

    Google Scholar 

  • Bachalo W (1995) A review of laser scattering in spray. Proc Comb Inst 25:333

    Google Scholar 

  • Bamford CH, Tipper CFH (Ed) (1977) Comprehensive Chemical Kinetics, Vol 17: Gas Phase Combustion. Elsevier, Amsterdam/Oxford/New York

    Google Scholar 

  • Bar M, Nettesheim S, Totermund HH, Eiswirth M, Ertl G (1995) Transition between fronts and spiral waves in a bistable surface reaction. Phys Rev Lett 74:1246

    Article  Google Scholar 

  • Barlow R (1998) Private communication. Combustion Research Facility, Sandia National Laboratories, Livermore

    Google Scholar 

  • Bartok W, Engleman VS, Goldstein R, del Valle EG (1972) Basic kinetic studies and modeling of nitrogen oxide formation in combustion processes. AIChE Symp Ser 68(126):30

    Google Scholar 

  • Bäuerle B, Hoffmann F, Behrendt F, Warnatz J (1995) Detection of Hot Spots in the End Gas of an 1C Engine Using Two-Dimensional LIF of Formaldehyde. Proc Comb Inst 25:135

    Google Scholar 

  • Baulch DL, Cox AM, Just T, Kerr JA, Pilling MJ, Troe J, Walker RW, Warnatz J (1991) Compilation of rate data on C1/C2 Species Oxidation. J Phys Chem Ref Data 21:3

    Google Scholar 

  • Bauich DL, Cobos CJ, Cox AM, Frank P, Hayman G, Just T, Kerr JA, Murreis T, Pilling MJ, Troe J, Walker RW, Warnatz J (1994) Compilation of rate data for combustion modelling Supplement I. J Phys Chem Ref Data 23:847

    Article  Google Scholar 

  • Baumgärtner L, Hess D, Jander H, Wagner HG (1985) Rate of soot growth in atmospheric premixed laminar flames. Proc Comb Inst 20:959

    Google Scholar 

  • Bazil R, Stepowski (1995) Measurement of vaporized and liquid fuel concentration fields in a burning spray jet of acetone using planar laser induced fluorescence. Exp Fluids 20:1

    Google Scholar 

  • Becker H, Monkhouse PB, Wolfram J, Cant RS, Bray KNC, Maly R, Pfister W, Stahl G, Warnatz J (1991) Investigation of extinction in unsteady flames in turbulent combustion by 2D-LIF of OH radicals and flamelet analysis. Proc Comb Inst 23:817

    Google Scholar 

  • Beebe KW, Cutrone MB, Matthews R, Dalla Betta RA, Schlatter JC, Furuse Y, Tsuchiya T (1995) Design and test of a catalytic combustor for a heavy duty industrial gas turbine. ASME paper no 95-GT-137

    Google Scholar 

  • Behrendt F, Bockhorn H, Rogg B, Warnatz J (1987) Modelling of turbulent diffusion flames with detailed chemistry, in: Warnatz J, Jäger W (eds.) Complex chemical reaction systems: Mathematical modelling and simulation, Springer, Heidelberg, p. 376

    Chapter  Google Scholar 

  • Behrendt F, Deutschmann O, Maas U, Warnatz J (1995) Simulation and sensitivity analysis of the heterogeneous oxidation of methane on a platinum foil. J Vac Sci Technol A13:1373

    Google Scholar 

  • Behrendt F, Deutschmann O, Schmidt R, Warnatz J (1996) Simulation and sensitivity analysis of the heterogeneous oxidation of methane on a platinum foil. In: Warren BK, Oyama ST (eds) Heterogeneous hydrocarbon oxidation, ACS symposium series 638, p 48

    Google Scholar 

  • Bergner P, Eberius H, Just T, Pokorny H (1983) Untersuchung zur Kohlenwasserstoff-Emission eingeschlossener Flammen im Hinblick auf die motorische Verbrennung. VDI-Berichte 498:233

    Google Scholar 

  • Bertagnolli KE, Lucht RP (1996) Temperature profile measurements in stagnation-flow diamond-forming flames using hydrogen CARS spectroscopy. Proc Comb Inst 26:1825

    Google Scholar 

  • Bilger RW (1976) The structure of diffusion flames. Comb Sci Technol 13:155

    Article  Google Scholar 

  • Bilger RW (1980) Turbulent flows with nonpremixed reactants. In: Libby PA, Williams FA (Ed) Turbulent reactive flows. Springer, New York

    Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. J. Wiley & Sons, New York

    Google Scholar 

  • Bish ES, and Dahm WJA (1995) Strained dissipation and reaction layer analysis of nonequilibrium chemistry in turbulent reacting flows. Comb Flame 100:457

    Article  Google Scholar 

  • Bittner JD, Howard JB (1981) Pre-particle chemistry in soot formation. In: Siegla DC, Smith GW (eds) Particulate carbon formation during combustion. Plenum Press, New York

    Google Scholar 

  • Bockhorn H (Ed) (1994) Soot formation in combustion. Springer, Berlin/Heidelberg

    Google Scholar 

  • Bockhorn H, Schäfer T (1994) Growth of soot particles in premixed flames by surface reactions. In: Bockhorn H (ed), Soot formation in combustion. Springer, Berlin/Heidelberg

    Chapter  Google Scholar 

  • Bockhorn H, Fetting F, Wenz HW (1983) Investigation of the formation of high molecular hydrocarbons and soot in premixed hydrocarbon-oxygen flames. Ber Bunsenges Phys Chem 87:1067

    Article  Google Scholar 

  • Bockhorn H, Chevalier C, Warnatz J, Weyrauch V (1990) Bildung von promptem NO in Kohlenwasserstoff-Luft-Flammen. 6. TECFLAM-Seminar, TECFLAM, DLR Stuttgart

    Google Scholar 

  • Bockhorn H, Chevalier C, Warnatz J, Weyrauch V (1991) Experimental Investigation and modeling of prompt NO formation in hydrocarbon flames. In: Santoro RJ, Felske JD (Ed) HTD-Vol 166, Heat transfer in fire and combustion systems, Book No G00629-1991

    Google Scholar 

  • Boddington T, Gray P, Kordylewski W, Scott SK (1983) Thermal explosions with extensive reactant consumption: A new criterion for criticality. Proc R Soc London, Ser A, 390(1798): 13

    Article  Google Scholar 

  • Bodenstein M, Lind SC (1906) Geschwindigkeit der Bildung des Bromwasserstoffs aus seinen Elementen. Z Phys Chem 57:168

    Google Scholar 

  • Böhm H, Hesse D, Jander H, Lüers B, Pietscher J, Wagner HG, Weiss M (1989) The influence of pressure and temperature on soot formation in premixed flames. Proc Comb Inst 22:403

    Google Scholar 

  • Böhm H, Jander H, Tanke D (1998) PAH growth and soot formation in the pyrolysis of acetylene and benzene at high temperatures and pressures. Proc Comb Inst 27:1605

    Google Scholar 

  • Bond GC (1990) Heterogeneous catalysis: Principles and applications, 2nd ed. Oxford Press, Oxford

    Google Scholar 

  • Borghi R (1984) In: Bruno C, Casci C (Ed) Recent advances in aeronautical science. Pergamon, London

    Google Scholar 

  • Boudart M, Djega-Mariadassouo G (1984) Kinetics of heterogeneous catalytic reactions. Princeton University Press, Princeton

    Google Scholar 

  • Bowman CT (1993) Control of combustion-generated nitrogen oxide emissions: Technology driven by regulation. Proc Comb Inst 24:859

    Google Scholar 

  • Bradley D (1993) How fast can we burn? Proc Comb Inst 24:247

    Google Scholar 

  • Braun M (1988) Differentialgleichungen und ihre Anwendungen. Springer, Berlin/Heidelberg/ New York/London/Paris/Tokyo, S 521

    Google Scholar 

  • Braun J, Hauber T, Többen H, Zacke P, Chatterjee D, Deutschmann O, Warnatz J (2000) Influence of physical and chemical parameters on the conversion rate of a catalytic converter: A numerical simulation study. SAE Technical Paper Series 2000-01-0211

    Google Scholar 

  • Bray KNC (1980) Turbulent flows with premixed reactants. In: Libby PA, Williams FA (Ed) Turbulent reacting flows. Springer, New York

    Google Scholar 

  • Bray KNC, Libby PA (1976) Interaction effects in turbulent premixed flames. Phys Fluids 19: 1687

    Article  MATH  Google Scholar 

  • Bray KNC, Moss JB (1977) A unified statistical model of the premixed turbulent flame. Acta Astron 4:291

    Article  Google Scholar 

  • Brena de 1a Rosa A, Sankar SV, Wang G, Balchalo WD (1992) Particle diagnostics and turbulence measurements in a confined isothermal liquid spray. ASME paper no 92-GT-l 13

    Google Scholar 

  • Brown GM, Kent JC (1985) In: Yang WC (Ed) Flow Visualization III. Hemisphere, London, S 118

    Google Scholar 

  • Buch KA, Dahm WJA (1996) Fine scale structure of conserved scalar mixing in turbulent flows Part I: Sc > 1. J Fluid Mech 317:21

    Article  Google Scholar 

  • Buch KA, Dahm WJA (1998) Fine scale structure of conserved scalar mixing in turbulent flows Part II: Sc < 1, J Fluid Mech 364:1

    Article  MATH  Google Scholar 

  • Burcat A (1984) In: Gardiner WC (Ed) Combustion chemistry. Springer, New York

    Google Scholar 

  • Burke SP, Schumann TEW (1928) Ind Eng Chem 20:998

    Article  Google Scholar 

  • Candel S, Veynante D, Lacas F, Darabiha N (1994) Current progress and future trends in turbulent combustion. Combust Sci Technol 98:245

    Article  Google Scholar 

  • Chatterjee D, Deutschmann O, Warnatz J (2001) Detailed surface reaction mechanism in a 3-way catalyst. Faraday Discussions 119, in Druck

    Google Scholar 

  • Chen JY, Kollmann W, Dibble RW (1989) PDF modeling of turbulent nonpremixed methane jet flames. Comb Sci Technol 64: 315

    Article  Google Scholar 

  • Chevalier C, Louessard P, Müller UC, Warnatz J (1990a) A detailed low-temperature reaction mechanism of n-heptane auto-ignition. Proc. 2nd Int. Symp. on diagnostics and modeling of combustion in reciprocating Engines. The Japanese Society of Mechanical Engineers, Tokyo, S 93

    Google Scholar 

  • Chevalier C, Warnatz J, Melenk H (1990b) Automatic generation of reaction mechanisms for description of oxidation of higher hydrocarbons. Ber Bunsenges Phys Chem 94:1362

    Google Scholar 

  • Chiu HH, Kim HY, Croke EJ (1982) Internal group combustion of liquid droplets. Proc Comb Inst 19:971

    Google Scholar 

  • Cho SY, Yetter RA, Dryer FL (1992) A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction. J Comp Phys 102:160

    Article  MATH  Google Scholar 

  • Christensen M, Johansson B, Ammneus P, Mauss F (1998) Supercharged homogeneous charge compression ignition. SAE paper 980787

    Google Scholar 

  • Christmann K (1991) Introduction to surface physical chemistry. Springer, Berlin/Heidelberg

    Google Scholar 

  • Chue RS, Lee JHS, Scarinci T, Papyrin A, Knystautas R (1993) Transition from fast deflagration to detonation under the influence of wall obstacles. In: Kuhl AL, Leyer JC, Borisov AA, Sirignano WA(Ed), Dynamic aspects of detonation and explosion phenomena. Progress in Astronautics and Aeronautics 153:270

    Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic Press, New York

    Google Scholar 

  • Coltrin ME, Kee RJ, Rupley FM (1993) Surface Chemkin: A general formalism and software for analyzing heterogeneous chemical kinetics at a gas-surface interface. Intl J Chem Kin 23:1111

    Article  Google Scholar 

  • Correa SM (1992) A review of NOx formation under gas-turbine combustion conditions. Comb Sci Technol 87:329

    Article  Google Scholar 

  • Curtiss CF, Hirschfelder JO (1959) Transport properties of multicomponent gas mixtures. J Chem Phys 17:550

    Article  MathSciNet  Google Scholar 

  • Dahm WJA, Bish ES (1993) High resolution measurements of molecular transport and reaction processes in turbulent combustion. In: Takeno T (Ed), Turbulence and molecular processes in combustion, S 287. Elsevier, New York

    Google Scholar 

  • Dahm WJA, Tryggvason G, Zhuang MM (1995) Integral method solution of time-dependent strained diffusion-reaction equations with multi-step kinetics, to appear in SIAM Journal of Applied Mathematics

    Google Scholar 

  • Dalla Betta RA, Schlatter JC, Nickolas SG, Cutrone MB, Beebe KW, Furuse Y, Tsuchiya T (1996) Development of a catalytic combustor for a heavy duty utility gas turbine. ASME paper no 96-GT-485

    Google Scholar 

  • D’Alessio A, Lorenzo A, Sarofim AF, Beretta F, Masi S, Venitozzi C (1975) Soot formation in methane-oxygen flames. Proc Comb Inst 15:1427

    Google Scholar 

  • Damköhler G (1940) Z Elektrochem 46:601

    Google Scholar 

  • D’Anna A, D’Alessio A, Minutulo P (1994) Spectroscopic and chemical characterization of soot inception processes in premixed laminar flames at atmospheric pressure. In: Bockhorn H (ed), Soot formation in combustion. Springer, Berlin/Heidelberg

    Google Scholar 

  • D’Anna A, Violi A (1998) A kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames. Proc Comb Inst 27:425

    Google Scholar 

  • Dasch JC (1985) Decay of soot surface growth reactivity and its importance in total soot formation. Comb Flame 61:219

    Article  Google Scholar 

  • Dean AM, Hanson RK, Bowman CT (1990) High temperature shock tube study of reactions of CH and C-atoms with N2. Proc Comb Inst 23:259

    Google Scholar 

  • Delfau JL, Michaud P, Barassin A (1979) Formation of small and large positive ions in rich and in sooting low-pressure ethylene and acetylene premixed flames. Comb Sci Tech 20:165

    Article  Google Scholar 

  • Deuflhard P, Wulkow M (1989) Impact of Computing in Science and Engineering 1:269

    Article  MATH  Google Scholar 

  • Deutschmann O, Behrendt F, Warnatz J (1994) Modelling and Simulation of Heterogeneous Oxidation of Methane on a Platinum Foil. Catalysis Today 21:461

    Article  Google Scholar 

  • Deutschmann O, Schmidt R, Behrendt F, Warnatz J (1996) Numerical modelling of catalytic ignition. Proc Comb Inst 26:1747

    Google Scholar 

  • Dibble RW, Masri AR, Bilger RW (1987) The spontaneous Raman scattering technique applied to non-premixed flames of methane. Comb Flame 67:189

    Article  Google Scholar 

  • Dimotakis PE, Miller PL (1990) Some consequences of the boundedness of scalar fluctuations. Phys Fluids A2:1919

    Google Scholar 

  • Dinkelacker F, Buschmann A, Schäfer M, Wolfrum J (1993) Spatially resolved joint measurements of OH-and temperature fields in a large premixed turbulent flame. Proceedings of the Joint Meeting of the British and German Sections of the Combustion Institute, Queens College, Cambridge, S 295

    Google Scholar 

  • Dixon-Lewis G, Fukutani S, Miller JA, Peters N, Warnatz J et al. (1985) Calculation of the structure and extinction limit of a methane-air counterflow diffusion flame in the forward stagnation region of a porous cylinder. Proc Comb Inst 20:1893

    Google Scholar 

  • Dobbins AR, Subramaniasivam H (1994) Soot precursor particles in flames. In: Bockhorn H (ed) Soot formation in combustion. Springer, Berlin/Heidelberg

    Google Scholar 

  • Dopazo C, O’Brien EE (1974) An approach to the description of a turbulent mixture. Acta Astron 1:1239

    Article  MATH  Google Scholar 

  • Dreier T, Lange B, Wolfrum J, Zahn M, Behrendt F, Warnatz J (1987) CARS measurements and computations of the structure of laminar stagnation-point methane-air counterflow diffusion flames. Proc Comb Inst 21:1729

    Google Scholar 

  • Du DX, Axelbaum RL, Law CK (1989) Experiments on the sooting limits of aerodynamicallystrained diffusion flames. Proc Comb Inst 22:387

    Google Scholar 

  • Eberius H, Just T, Kelm S, Warnatz J, Nowak U (1987) Konversion von brennstoffgebundenem Stickstoff am Beispiel von dotierten Propan-Luft-Flammen. VDI-Berichte 645:626

    Google Scholar 

  • Eckbreth AC (1988) Laser diagnostics for combustion temperature and species. In: Gupta AK and Lilley DG (Ed), Energy and engineering sciences Vol 6

    Google Scholar 

  • Eckbreth AC (1996) Laser diagnostics for combustion temperature and species, 2nd edition. In: Sirignano WA (Ed), Combustion science and technology book series Vol 3, Gordon and Breach

    Google Scholar 

  • Edgar B, Dibble RW (1996) Process for removal of oxides of nitrogen. U.S. Patent No 5 547 650

    Google Scholar 

  • Edwards DH (1969) A survey of recent work on the structure of detonation waves, Proc Comb Inst 12:819

    Google Scholar 

  • El-Gamal M, Warnatz J (1995) Soot formation in combustion processes. In: Der Arbeitsprozess des Verbrennungsmotors, S. 87. Technische Universität Graz

    Google Scholar 

  • Esser C, Maas U, Warnatz J (1985) Chemistry of the combustion of higher hydrocarbons and its relation to engine knock. Proc. 1st Int. Symp. on diagnostics and modeling of combustion in reciprocating Engines. The Japanese Society of Mechanical Engineers, Tokyo, S 335

    Google Scholar 

  • Faeth GM (1984) Evaporation and combustion of sprays. Prog Energy Combust Sci 9:1

    Article  Google Scholar 

  • Farrow RL, Martern PL, Rahn LA (1982) Comparison between CARS and corrected thermocouple temperature measurements in a diffusion flame. Appl Opt 21:3119

    Article  Google Scholar 

  • Fenimore CP (1979) Studies of fuel-nitrogen in rich flame gases. Proc Comb Inst 17:661

    Google Scholar 

  • Fenimore CP, Jones GW (1967) Oxidation of soot by hydroxyl radicals. J Phys Chem 71:593

    Article  Google Scholar 

  • Flower WL, Bowman CT (1986) Soot production in axisymmetric laminar diffusion flames at pressures one to ten atmospheres. Proc Comb Inst 21:1115

    Google Scholar 

  • Forsythe GE, Wasow WR (1969) Finite-difference methods for partial differential equations. Wiley, New York

    Google Scholar 

  • Frank-Kamenetskii DA (1955) Diffusion and heat exchange in chemical kinetics. Princeton University Press, Princeton

    Google Scholar 

  • Frenklach M (1985) Chem. Eng. Sci. 40:1843

    Article  Google Scholar 

  • Frenklach M, Clary D (1983) Ind Eng Chem Fundam 22:433

    Article  Google Scholar 

  • Frenklach M, Warnatz J (1987) Detailed modeling of PAH profiles in a sooting low pressure acetylen flame. Comb Sci Technol 51:265

    Article  Google Scholar 

  • Frenklach M, Ebert LB (1988) Comment on the proposed role of spheroidal carbon clusters in soot formation. J Phys Chem 92:561

    Article  Google Scholar 

  • Frenklach M, Wang H (1991) Detailed modeling of soot particle nucleation and growth. Proc Comb Inst 23:1559

    Google Scholar 

  • Frenklach M, Ramachandra MK, Matula MA (1984) Soot formation in shock-tube oxidation of hydrocarbons. Proc Comb Inst 20:871

    Google Scholar 

  • Frenklach M, Clary DW, Gardiner jr WC, Stein SE (1985) Proc Comb Inst 20:887

    Google Scholar 

  • Frenklach M, Clary DW, Yuan T, Gardiner jr WC, Stein SE (1986) Combust. Sci. Tech. 50:79

    Article  Google Scholar 

  • Fric TF (1993) Effects of fuel-air unpremixedness on NOx emissions. J Propulsion Power 9:708

    Article  Google Scholar 

  • Friedlander SK (1977) Smoke, dust and haze. John Wiley and Sons, New York

    Google Scholar 

  • Fristrom RM, Westenberg AA (1965) Flame structure. McGraw-Hill, New York

    Google Scholar 

  • Fristrom RM (1995) Flame structure and processes. Oxford University Press, New York/Oxford

    Google Scholar 

  • Fritz A, Pitchon V (1997) The current state of research on automotive lean NOx catalysis. Applied Catalysis B: Environmental 13:1

    Article  Google Scholar 

  • Garo A, Prado G, Lahaye J (1990) Chemical aspects of soot particles oxidation in a laminar methane-air diffusion flame. Comb. Flame 79, 226 (1990)

    Article  Google Scholar 

  • Gaydon A, Wolfhard H (1979) Flames, their structure, radiation, and temperature. Chapman and Hall, London

    Google Scholar 

  • Gehring M, Hoyermann K, Schacke H, Wolfrum J (1973) Direct studies of some elementary steps for the formation and destruction of nitric oxide in the H-N-O system. Proc Comb Inst 14:99

    Google Scholar 

  • Geitlinger H, Streibel T, Suntz R, Bockhorn H (1998) Two-dimensional imaging of soot volume fractions, particle number densities and particle radii in laminar and turbulent diffusion flames. Proc Comb Inst 27:1613

    Google Scholar 

  • Gill A, Warnatz J, Gutheil E (1994) Numerical investigation of the turbulent combustion in a direct-injection stratified-charge engine with emphasis on pollutant formation. Proc. COMODIA (1994), S 583. JSME, Yokohama

    Google Scholar 

  • Glarborg P, Miller JA, Kee RJ (1986) Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors. Comb Flame 65:177

    Article  Google Scholar 

  • Gordon S, McBride BJ (1971) Computer program for calculation of complex chemical eqilibrium compositions, rocket performance, incident and reflected shocks and Chapman Jouguet detonations. NASA SP-273

    Google Scholar 

  • Görner K (1991) Technische Verbrennungssysteme. Springer Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Goyal G, Warnatz J, Maas U (1990a) Numerical studies of hot spot ignition in H2-O2 and CH4-air mixtures. Proc Comb Inst 23:1767

    Google Scholar 

  • Goyal G, Maas U, Warnatz J (1990b) Simulation of the transition from deflagration to detonation. SAE 1990 Transactions, Journal of Fuels & Lubricants, Section 4, Vol 99, Society of Automotive Engineers, Inc, Warrendale, PA, S 1

    Google Scholar 

  • Graham SC (1976) The collisional growth of soot particles at high temperatures. Proc Comb Inst 16:663

    Google Scholar 

  • Graham SC, Homer JB, Rosenfeld JLJ (1975a) The formation and coagulation of soot aerosols. In: Kamimoto G (ed) Modern developments in shock-tube research: Proceedings of the tenth shock tube symposium, p 621

    Google Scholar 

  • Graham SC, Homer JB, Rosenfeld JLJ (1975b) The formation and coagulation of soot aerosols generated by the pyrolysis of aromatic hydrocarbons. Proc Roy Soc A 344:259

    Article  Google Scholar 

  • Grimstead JH, Finkelstein ND, Lempert W, Miles R, Lavid M (1996) Frequency-modulated filtered Rayleigh scattering (FM-FRS): A new technique for real-time velocimetry. AIAA paper no 96-0302

    Google Scholar 

  • Günther R (1987), 50 Jahre Wissenschaft und Technik der Verbrennung, BWK 39 Nr 9

    Google Scholar 

  • Gutheil E, Sirignano WA (1998) Counterflow spray combustion modeling with detailed transport and detailed chemistry. Combustion and Flame 113:92

    Article  Google Scholar 

  • Gutheil E, Bockhorn H (1987) The effect of multi-dimensional PDF’s in turbulent reactive flows at moderate Damköhler number. Physicochemical Hydrodynamics 9:525

    Google Scholar 

  • Hall RJ, Eckbreth AC (1984) In: Erf RK (Ed) Laser applications Vol V. Academic Press, New York

    Google Scholar 

  • Hanson RK (1986) Combustion Diagnostics: Planar Imaging Techniques. Proc Comb Inst 21:1677

    Google Scholar 

  • Hanson RK, Seitzman JM, Paul P (1990) Planar laser-fluorescence imaging of combustion gases. Appl Phys B50:441

    Google Scholar 

  • Härle H, Lehnert A, Metka U, Volpp HR, Willms L, Wolfrum J (1998) In-situ detection of chemisorbed CO on a polycristalline platinum foil using infrared-visible sum-frequency generation (SFG). Chem Phys Lett 293:26

    Article  Google Scholar 

  • Harris SJ, Weiner AM (1990) Surface growth and soot particle reactivity. Combust Sci Technol 72:67

    Article  Google Scholar 

  • Harris SJ, Weiner AM, Ashcraft CC (1986a) Soot particle inception kinetics in a premixed ethylene flame. Comb Flame 64:65

    Article  Google Scholar 

  • Harris SJ, Weiner AM, Blint RJ, Goldsmith JEM (1986b) A picture of soot particle inception. Proc Comb Inst 22:333

    Google Scholar 

  • Harris SJ, Weiner AM, Blint RJ (1988) Formation of small aromatic molecules in a sooting ethylene flame. Comb Flame 72:91

    Article  Google Scholar 

  • Harville T, and Holve D (1997) Method for measuring particle size in presence of multiple scattering. U.S. Patent No 5 619 324

    Google Scholar 

  • Haynes BS, Wagner HG (1981) Soot formation. Prog Energy Combust Sci 7:229

    Article  Google Scholar 

  • He LT, Lee JHS (1995) The dynamical limit of one-dimensional detonations. Phys Fluids 7:1151

    Article  MATH  Google Scholar 

  • Heard DE, Jeffries JB, Smith GP, Crosley DR (1992) LIF measurements in methane/air flames of radicals important in prompt-NO formation. Comb Flame 88:137

    Article  Google Scholar 

  • Heck RM, Farrauto RJ (1995) Catalytic air pollution control. Van Nostrand Reinhold, New York

    Google Scholar 

  • Heywood JB (1988) Internal combustion engine fundamentals. McGraw-Hill, New York

    Google Scholar 

  • Hinze J (1972) Turbulence, 2nd ed. McGraw-Hill, New York

    Google Scholar 

  • Hirschfelder JO (1963) Some remarks on the theory of flame propagation. Proc Comb Inst 9:553

    Google Scholar 

  • Hirschfelder JO, Curtiss CF (1949) Theory of propagation of flames. Part I: General equations. Proc Comb Inst 3:121

    Google Scholar 

  • Hirschfelder JO, Curtiss CF, Bird RB (1964) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  • Hobbs ML, Radulovic PT, Smoot LD (1993) Combustion and gasification of coals in fixedbeds. Progr Energy Comb Sci 19:505

    Article  Google Scholar 

  • Hodkinson JR (1963) Computational light scattering and extinction by spheres according to diffraction and geometrical optics and some comparison with Mie theory. J Opt Soc Amer 53:577

    Article  Google Scholar 

  • Holve DJ, Self SA (1979a) Optical particle sizing for in-situ measurement I. Appl. Opt. 18:1632

    Article  Google Scholar 

  • Holve DJ, Self SA (1979b) Optical particle sizing for in-situ measurement II. Appl. Opt. 18:1646

    Article  Google Scholar 

  • Homann, KH (1967) Carbon formation in premixed flames. Comb Flame 11:265

    Article  Google Scholar 

  • Homann KH (1975) Reaktionskinetik. Steinkopff, Darmstadt

    Book  Google Scholar 

  • Homann KH (1984) Formation of large molecules, particulates, and ions in premixed hydrocarbon flames; progress and unresolved questions. Proc Comb Inst 20:857

    Google Scholar 

  • Homann K, Solomon WC, Warnatz J, Wagner HGg, Zetzsch C (1970) Eine Methode zur Erzeugung von Fluoratomen in inerter Atmosphäre. Ber Bunsenges Phys Chem 74:585

    Google Scholar 

  • Hottel HC, Hawthorne WR (1949) Diffusion in laminar flame jets. Proc Comb Inst 3:254

    Google Scholar 

  • Howard JB, Wersborg BL, Williams GC (1973) Coagulation of carbon particles in premixed flames. Faraday Symp Chem Soc 7:109

    Article  Google Scholar 

  • Hsu DSY, Hoffbauer MA, Lin MC (1987) Surface Sci. 184:25

    Article  Google Scholar 

  • Hurst BE (1984) Report 84-42-1, Exxon Research

    Google Scholar 

  • Ishiguro T, Takatori Y, Akihama K (1997) Microstructure of Diesel soot particles probed by electron microscopy: First observation of inner core and outer shell. Comb Flame 108:231

    Article  Google Scholar 

  • Jander H (1995) private communication. Universität Göttingen

    Google Scholar 

  • John F (1981) Partial differential equations. In: Applied mathematical sciences Vol 1. Springer, New York Heidelberg Berlin, S 4

    Google Scholar 

  • Johnston HS (1992) Atmospheric ozone. Annu Rev Phys Chem 43:1

    Article  Google Scholar 

  • Jones WP, Whitelaw JH (1985) Modelling and measurement in turbulent combustion. Proc Comb Inst 20:233

    Google Scholar 

  • Jost W (1939) Explosions-und Verbrennungsvorgänge in Gasen. Julius Springer, Berlin

    Book  Google Scholar 

  • Kauzmann W (1966) Kinetic theory of gases. Benjamin/Cummings, London

    Google Scholar 

  • Kee RJ, Rupley FM, Miller JA (1987) The CHEMKIN thermodynamic data base. SANDIA Report SAND87-8215, Sandia National Laboratories, Livermore CA

    Google Scholar 

  • Kee RJ, Rupley FM, Miller JA (1989a) CHEMKIN-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia National Laboratories Report SAND89-8009

    Google Scholar 

  • Kee RJ, Miller JA, Evans GH, Dixon-Lewis G (1989b) A computational model of the structure and extinction of strained opposed-flow premixed methane-air flames. Proc Comb Inst 22:1479

    Google Scholar 

  • Kellerer H, Müller A, Bauer HJ, Wittig S (1996) Soot formation in a shock tube under elevated pressure conditions. Combust Sci Technol 113:67

    Article  Google Scholar 

  • Kent JH, Bilger RW (1976) The prediction of turbulent diffusion flame fields and nitric oxide formation. Proc Comb Inst 16:1643

    Google Scholar 

  • Kerstein AR (1992) Linear-eddy modelling of turbulent transport 7. Finite-rate chemistry and multistream mixing. J Fluid Mech 240:289

    Article  Google Scholar 

  • Kissel-Osterrieder R, Behrendt F, Warnatz J (1998) Detailed modeling of the oxidation of CO on platinum: A Monte-Carlo model. Proc Comb Inst 27:2267

    Google Scholar 

  • Kissel-Osterrieder R, Behrendt F Warnatz J (2000) Dynamic Monte-Carlo Simulations of Catalytic Surface Reactions. Proc Comb Inst 28, in press

    Google Scholar 

  • Klaus P, Warnatz J (1995) A contribution towards a complete mechanism for the formation of NO in flames. Joint meeting of the French and German Sections of the Combustion Institute, Mulhouse

    Google Scholar 

  • Kolb T, Jansohn P, Leuckel W (1988) Reduction of NOx emission in turbulent combustion by fuel-staging / effects of mixing and stoichiometry in the reduction Zone. Proc Comb Inst 22:1193

    Google Scholar 

  • Kolmogorov AN (1942) Izw Akad Nauk SSSR Ser Phys 6:56

    Google Scholar 

  • Kompa K, Sick V, Wolfrum J (1993) Laser diagnostics for industrial processes. Ber Bunsenges Phys Chem 97:1503

    Article  Google Scholar 

  • Kordylewski W, Wach J (1982) Criticality for thermal ignition with reactant consumption. Comb Flame 45:219

    Article  Google Scholar 

  • Köylü ÜÖ, Faeth GM (1992) Structure of overfire soot in buoyant turbulent diffusion flames at long residence times. Comb Flame 89:140

    Article  Google Scholar 

  • Köylü ÜÖ, Faeth GM, Farias TL, Carvalho MG (1995) Fractal and projected structure properties of soot aggregates. Comb Flame 100:621

    Article  Google Scholar 

  • Kramer MA, Kee RJ, Rabitz H (1982) CHEMSEN: A computer code for sensitivity analysis of elementary reaction models. SANDIA Report SAND82-8230, Sandia National Laboratories, Livermore CA

    Google Scholar 

  • Lam SH, Goussis DA (1989) Understanding complex chemical kinetics with computational singular perturbation. Proc Comb Inst 22:931

    Google Scholar 

  • Lange M, Riedel U, Warnatz J (1998) Parallel DNS of turbulent flames with detailed reaction schemes. AIAA paper no 98-2979

    Google Scholar 

  • Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic Press, London/New York

    MATH  Google Scholar 

  • Lauterbach J, Asakura K, Rotermund HH (1995) Subsurface oxygen on Pt(l00): kinetics of the transition from chemisorbed to subsurface state and its reaction with CO, H2, and O2. Surf Sci 313:52

    Article  Google Scholar 

  • Law CK (1989) Dynamics of stretched flames. Proc Comb Inst 22:1381

    Google Scholar 

  • Lee JC, Yetter RA, Dryer FL (1995) Comb. Flame 101:387

    Article  Google Scholar 

  • Libby PA, Williams FA (1980) Fundamental aspects of turbulent reacting flows. In: Libby PA, Williams FA (Ed) Turbulent reacting flows. Springer, New York

    Chapter  Google Scholar 

  • Libby PA, Williams FA (1994) Turbulent reacting flows. Academic Press, New York

    MATH  Google Scholar 

  • Lieuwen T, Zinn BT (1998) The role of equivalence ration oscillations in driving combustion instabilities in low NOx gas turbines. Proc Comb Inst 27:1809

    Google Scholar 

  • Liew SK, Bray KNC, Moss JB (1984) A stretched laminar flamelet model of turbulent nonpremixed combustion. Comb Flame 56:199

    Article  Google Scholar 

  • Liñán A, Williams FA (1993) Fundamental aspects of combustion. Oxford University Press, Oxford

    Google Scholar 

  • Lindemann FA (1922) Trans Farad Soc 17:599

    Article  Google Scholar 

  • Liu Y, Lenze B (1988) The Influence of turbulence on the burning velocity of premixed CH4-H2 flames with different laminar burning velocities. Proc Comb Inst 22:747

    Google Scholar 

  • Ljungström S, Kasemo B, Rosen A, Wahnström T, Fridell E (1989) Surface Sci. 216:63

    Article  Google Scholar 

  • Lobert JM, Warnatz J (1993) Emissions from the Combustion Process in Vegetation, in: Crutzen PJ, Goldammer JG (Ed), Fire in the environment: The ecological, atmospheric, and climatic importance of vegetation fires (Dahlem Konferenzen ES 13), S 15. John Wiley & Sons, Chicester

    Google Scholar 

  • Löffler L, Löffler P, Weilmünster P, Homann K-H (1994) Growth of large ionic polycyclic aromatic hydrocarbons in sooting flames. In: Bockhorn H (ed), Soot formation in combustion. Springer, Berlin/Heidelberg

    Google Scholar 

  • Long MB, Levin PS, Fourguette DC (1985) Simultaneous two-dimensional mapping of species concentration and temperature in tubulent flames. Opt Lett 10:267

    Article  Google Scholar 

  • Long MB, Smooke MD, Xu Y, Zurn RM, Lin P, Frank JH (1993) Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames. Proc Comb Inst 24:813

    Google Scholar 

  • Lovell W (1948) Knocking characteristics of hydrocarbons. Ind Eng Chem 40:2388

    Article  Google Scholar 

  • Lovett JA, Abuaf N (1992) Emissions and stability characteristics of flameholders for leanpremixed combustion. Proc. International Gas Turbine and Aeroengine Congress, JASME 92-GT-120

    Google Scholar 

  • Lozano A, Yip B, Hanson RK (1992) Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence. Exp. Fluids 13:369

    Article  Google Scholar 

  • Lutz AE, Kee RJ, Miller JA (1987) A Fortran program to predict homogeneous gas-phase chemical kinetics including sensitivity analysis. SANDIA Report SAND87-8248, Sandia National Laboratories, Livermore CA

    Google Scholar 

  • Lutz AE, Kee RJ, Miller JA, Dwyer HA, Oppenheim AK (1989) Dynamic effects of autoignition centers for hydrogen and C1,2-hydrocarbon fuels. Proc Comb Inst 22:1683

    Google Scholar 

  • Lyon RK (1974) U.S. Patent No 3 900 544’ Maas U (1990) private communication

    Google Scholar 

  • Maas U (1998) Efficient Calculation of Intrinsic Low-Dimensional Manifolds for the Simplification of Chemical Kinetics. Comp Vis Sci 1: 69–82

    Article  MATH  Google Scholar 

  • Maas U, Pope SB (1992) Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Comb Flame 88:239

    Article  Google Scholar 

  • Maas U, Pope SB (1993) Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. Proc Comb Inst 24:103

    Google Scholar 

  • Maas U, Pope SB (1994) Laminar Flame Calculations Using Simplified Chemical Kinetics Based on Intrinsic Low-Dimensional Manifolds. Proc Comb Inst 25: 1349–1356

    Google Scholar 

  • Maas U, Warnatz J (1988) Ignition processes in hydrogen-oxygen mixtures. Comb Flame 74:53

    Article  Google Scholar 

  • Maas U, Warnatz J (1989) Solution of the 2D Navier-Stokes equation using detailed chemistry. Impact of Computing in Science and Engineering 1:394

    Article  MATH  Google Scholar 

  • Mach JJ, Varghese PL (1998) Velocity measurements using filtered Rayleigh scattering of near-IR diode lasers. AIAA paper no 98-0510

    Google Scholar 

  • Magre P, Dibble RW (1988) Finite chemical kinetic effects in a subsonic turbulent hydrogen flame. Comb Flame 73:195

    Article  Google Scholar 

  • Malte PC, Pratt DT (1974) Measurement of atomic oxygen and nitrogen oxides in jet-stirred combustion. Proc Comb Inst 15:1061

    Google Scholar 

  • Marsal (1976) Die numerische Lösung partieller Differentialgleichungen in Wissenschaft und Technik. Bibliographisches Institut Mannheim/Wien/Zürich

    Google Scholar 

  • Masri AR, Bilger RW, Dibble RW (1988) Turbulent nonpremixed flames of methane near extinction: probability density functions. Comb Flame 73:261

    Article  Google Scholar 

  • Mathur S, Tondon PK, Saxena SC (1967) Heat conductivity in ternary gas mixtures. Mol Phys 12:569

    Article  Google Scholar 

  • Mauss F, Schäfer T, Bockhorn H (1994a) Inception and growth of soot particles in dependence on the surrounding gas phase. Comb Flame 99:697

    Article  Google Scholar 

  • Mauss F, Trilken B, Breitbach H, Peters N (1994b) Soot formation in partially premixed diffusion flames at atmospheric pressure. In: Bockhorn H (ed) Soot formation in combustion. Springer, Berlin/Heidelberg

    Google Scholar 

  • McKinnon JT (1989) Chemical and physical mechanisms of soot formation. Ph.D. Dissertation, MIT, Cambridge (Massachusetts)

    Google Scholar 

  • McMillin BK, Palmer JL, Hanson RK (1993) Temporally resolved two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow. Appl Optics 32:7532

    Article  Google Scholar 

  • McMurtry PA, Menon S, Kerstein AR (1992) A linear eddy sub-grid model for turbulent reacting flows: application to hydrogen-air combustion. Proc Comb Inst 24:271

    Google Scholar 

  • Miller JH (1990) The kinetics of polynuclear aromatic hydrocarbon agglomeration in flames. Proc Comb Inst 23:91

    Google Scholar 

  • Miller JA (1996) Theora and modeling in combustion chemistry. Proc Comb Inst 26:461

    Google Scholar 

  • Miller JA, Melius CF (1991) 202nd ACS National Meeting, New York, S 1440

    Google Scholar 

  • Mittelbach G, Voje H (1986) Anwendung des SNCR-Verfahrens hinter einer Zyklonfeuerung. In: NO4-Bildung und NOx-Minderung bei Dampferzeugern für fossile Brennstoffe. VGB-Handbuch

    Google Scholar 

  • Mongia RM, Tomita E, Hsu FK, Talbot L, Dibble RW (1996) Use of an optical probe for time-resolved in situ measurement of local air-to-fuel ratio and extent of fuel mixing with application to low NOx emissions in premixed gas turbines. Proc Comb Inst 26:2749

    Google Scholar 

  • Mongia R, Dibble RW, Lovett J (1998) Measurements of air-fuel ratio fluctuations caused by combustor driven oscillations. ASM paper no 98-GT-304

    Google Scholar 

  • Morley C (1987) A fundamentally based correlation between alkane structure and octane number. Comb Sci Technol 55:115

    Article  Google Scholar 

  • Moss JB (1979) Simultaneous measurements of concentration and velocity in an open premixed turbulent flame. Comb Sci Technol 22:115

    Google Scholar 

  • Moss JB (1994) Modeling soot formation for turbulent flame prediction. In: Bockhorn H (ed) Soot formation in combustion. Springer, Berlin/Heidelberg

    Google Scholar 

  • Moss JB, Stewart CD, Young KJ (1995) Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions. Comb Flame 101:491

    Article  Google Scholar 

  • Mungal MG, Lourenco LM, and Krothapalli A (1995) Instantaneous velocity measurements in laminar and turbulent premixed flames using on-line PIV. Comb. Sci. Tech 106:239

    Article  Google Scholar 

  • Nau M, Wölfert A, Maas U, Warnatz J (1996) Application of a combined pdf/finite-volume scheme on turbulent methane diffusion flames. 8th International Symposium on Transport Pheneomena in Combustion, S 986

    Google Scholar 

  • Nehse M, Warnatz J, Chevalier C (1996) Kinetic modelling of the oxidation of large aliphatic hydrocarbons. Proc Comb Inst 26:773

    Google Scholar 

  • Neoh KG, Howard JB, Sarofim AF (1974) Effect of oxidation on the physical structure of soot. Proc Comb Inst 20:951

    Google Scholar 

  • Nguyen QV, Edgar BL, Dibble RW (1993) Experimental and numerical comparison of extractive and in-situ laser measurements of non-equilibrium carbon monoxide in lean-premixed natural gas combustion. Comb Flame 100:395

    Article  Google Scholar 

  • Nowak U, Warnatz J (1988) Sensitivity analysis in aliphatic hydrocarbon combustion. In: Kuhl AL, Bowen JR, Leyer J-C, Borisov A (Ed) Dynamics of reactive systems, Part I. AIAA, New York, S 87

    Google Scholar 

  • NOx-Symposium Karlsruhe, Proceedings (1985). Rentz O, Ißle F, Weibel M (Hrsg). VDI, Düsseldor

    Google Scholar 

  • Onsager L (1931) Phys Rev 37:405, 38:2265

    Article  Google Scholar 

  • Oppenheim AK, Manson N, Wagner HGg (1963) AIAA J 1:2243

    Article  Google Scholar 

  • Oran ES, Boris JP (1993) Computing turbulent shear flows — a convenient conspiracy. Computers in Physics 7:523

    Google Scholar 

  • Palmer HB, Cullis CF (1965) The formation of carbon from gases. In: Walker PL (ed), Chemistry and physics of carbon Vol 1, p 265. Marcel Dekker, New York.

    Google Scholar 

  • Paul P, Warnatz J (1998) A re-evaluation of the means used to calculate transport properties of reacting flows. Proc Comb Inst 27:495

    Google Scholar 

  • Paul P, van Cruyningen I, Hanson RK, Kychakoff G (1990) High resolution digital flow-field imaging of jets. Exp Fluids 9:241

    Article  MATH  Google Scholar 

  • Penner SS, Bernard JM, Jerskey T (1976a) Laser scattering from moving polydisperse particles in flames I: Theory. Acta Astr. 3:69

    Article  Google Scholar 

  • Penner SS, Bernard JM, Jerskey T (1976b) Laser scattering from moving polydisperse particles in flames II Preliminary experiments. Acta Astr. 3:93

    Article  Google Scholar 

  • Perrin M, Namazian N, Kelly J, Schefer RW (1995) Effect of confinement and blockage ratio on nonpremixed turbulent bluff-body burner flames. Poster, 23rd Symposium (International) on Combustion, Orleans

    Google Scholar 

  • Peters N (1987) Laminar flamelet concepts in turbulent combustion. Proc Comb Inst 21:1231

    Google Scholar 

  • Peters N, Warnatz J (Ed) (1982) Numerical methods in laminar flame propagation. Vieweg-Verlag, Wiesbaden

    MATH  Google Scholar 

  • Pfefferle LD, Bermudez G, Byle J (1994) Benzene and higher hydrocarbon formation during allene pyrolysis. In: Bockhorn H (ed), Soot formation in combustion. Springer, Berlin/Heidelberg

    Google Scholar 

  • Pitz WJ, Warnatz J, Westbrook CK(1989) Simulation of auto-ignition over a large temperature Range. Proc Comb Inst 22:893

    Google Scholar 

  • Poinsot T, Veynante D, Candel S (1991) Diagrams of premixed turbulent combustion based on direct numerical simulation. Proc Comb Inst 23:613

    Google Scholar 

  • Pope SB (1986) PDF methods for turbulent reactive flows. Prog Energy Combust Sci 11:119

    Article  MathSciNet  Google Scholar 

  • Pope SB (1991) Computations of Turbulent Combustion: Progress and Challenges. Proc Comb Inst 23:591

    Google Scholar 

  • Prandtl L (1925) Über die ausgebildete Turbulenz. Zeitschrift für Angewandte Mathematik und Mechanik 5:136

    MATH  Google Scholar 

  • Prandtl L (1945) Über ein neues Formelsystem der ausgebildeten Turbulenz. Nachrichten der Gesellschaft der Wissenschaften Göttingen, Mathematisch-Physikalische Klasse, S 6

    Google Scholar 

  • Raffel B, Warnatz J, Wolfrum J (1985) Experimental study of laser-induced thermal ignition in O2/O3 mixtures. Appl Phys B 37:189

    Article  Google Scholar 

  • Raja LL, Kee RJ, Deutschmann O,Warnatz J, Schmidt LD (2000) A critical evaluation of Navier-Stokes, boundary-layer, and plug-flow models of the flow and chemistry in a catalytic-combustion monolith. Catalysis Today 59:47

    Article  Google Scholar 

  • Razdan MK, Stevens JG (1985) CO/air turbulent diffusion flame: Measurements and modeling. Comb Flame 59:289

    Article  Google Scholar 

  • Reh CT (1991) Höhermolekulare Kohlenwasserstoffe in brennstoffreichen Kohlenwasserstoff/ Sauerstoff-Flammen. Dissertation, TH Darmstadt

    Google Scholar 

  • Reynolds WC (1986) The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN version 3. Dept. of Engineering, Stanford University

    Google Scholar 

  • Reynolds WC (1989) The potential and limitations of direct and large eddy simulation. In: Whither turbulence? Turbulence at crossroads. Lecture notes in physics, Springer, New York, S 313

    Google Scholar 

  • Rhodes RP (1979) In: Murthy SNB (Ed) Turbulent mixing in non-reactive and reactive flows, Plenum Press, New York, S 235

    Google Scholar 

  • Riedel U, Schmidt R, Warnatz J (1992) Different levels of air dissociation chemistry and Its coupling with flow models. In: Bertin JJ, Periaux J, Ballmann J (Ed), Advances in Hypersonics — Vol. 2: Modeling Hypersonic Flows. Birkhäuser, Boston

    Google Scholar 

  • Riedel U, Schmidt D, Maas U, Warnatz J (1994) Laminar flame calculations based on automatically simplified chemical kinetics. Proc. Eurotherm Seminar 35, Compact Fired Heating Systems, Leuven, Belgium

    Google Scholar 

  • Roberts WL, Driscoll JF, Drake MC, Goss LP (1993) Images of the quenching of a flame by a vortex — To quantify regimes of turbulent combustion. Comb Flame 94:58

    Article  Google Scholar 

  • Robinson PJ, Holbrook KA (1972) Unimolecular reactions. Wiley-Interscience, New York

    Google Scholar 

  • Rogg B, Behrendt F, Warnatz J (1987) Turbulent non-premixed combustion in partially premixed diffusion flamelets with detailed chemistry. Proc Comb Inst 21:1533

    Google Scholar 

  • Roshko A (1975) Progress and Problems in Turbulent Shear Flows. In: Murthy SNB (Ed) Turbulent Mixing in Nonreactive and Reactive Flow, Plenum, New York

    Google Scholar 

  • Rosner DE (2000) Transport processes in chemically reacting flow systems. Dover Publication, Mineola NY

    Google Scholar 

  • Rosten H, Spalding B (1987) PHOENICS: Beginners guide; user manual; photon user guide. Concentration Heat and Momentum LTD, London

    Google Scholar 

  • Roth P, von Gersum S (1993) High temperature oxidation of soot particles by O, OH, and NO. In: Takeno T (ed), Turbulence and molecular processes in combustion, Elsevier, London, p 149.

    Google Scholar 

  • Roth P, Brandt O, von Gersum S (1990), High temperature oxidation of suspended soot particles verified by CO and CO2 measurements. Proc Comb Inst 23:1485

    Google Scholar 

  • Rumminger MD, Dibble RW, Heberle NH, Crosley DR (1996) Gas temperature above a porous radient burner: Comparison of measurements and model predictions. Proc Comb Inst 26:1755

    Google Scholar 

  • Santoro RJ, Yeh TT, Horvath JJ Semerjian HH (1987) The transport and growth of soot particles in laminar diffusion flames. Comb Sci Technol 53:89

    Article  Google Scholar 

  • Schlatter JC, Dalla Betta RA, Nickolas SG, Cutrone MB, Beebe KW, Tsuchiya T (1997) Single digit emissions in a full scale catalytic combustor. ASME paper no 97-GT-57

    Google Scholar 

  • Schmidt D (1996) Modellierung reaktiver Strömungen unter Verwendung automatisch reduzierter Reaktionsmechanismen, PhD Thesis, Universität Heidelberg

    Google Scholar 

  • Schwanebeck W, Warnatz J (1972) Reaktionen des Butadiins I: Die Reaktion mit Wasserstoffatomen. Ber Bunsenges Phys Chem 79:530

    Article  Google Scholar 

  • Semenov NN (1928) Z Phys Chem 48:571

    Google Scholar 

  • Semenov NN (1935) Chemical Kinetics and Chain Reactions. Oxford University Press, London

    Google Scholar 

  • Seinfeld JH (1986) Atmospheric chemistry and physics of air pollution. John Wiley and Sons, New York

    Google Scholar 

  • Seitzman JM, Kychakoff G, Hanson RK (1985) Instantaneous temperature field measurements using planar laser-induced fluorescence. Opt Lett 10:439

    Article  Google Scholar 

  • Sherman FS (1990) Viscous Flow. McGraw-Hill, New York

    MATH  Google Scholar 

  • Shirley JA, Winter MA (1993) Air mass flux measurement system using Doppler-shifted filtered Rayleigh scattering. AIAA paper no 93-0513

    Google Scholar 

  • Shvab VA (1948) Gos Energ izd Moscow-Leningrad

    Google Scholar 

  • Sick V, Arnold A, Dießel E, Dreier T, Ketterle W, Lange B, Wolfram J, Thiele KU, Behrendt F, Warnatz J (1991) Two-dimensional laser diagnostics and modeling of counterflow diffusion flames. Proc Comb Inst 23:495

    Google Scholar 

  • Sirignano WA (1984) Fuel droplet vaporization and spray combustion theory. Prog Energy Combust Sci 9:291

    Article  Google Scholar 

  • Sirignano WA (1992) Fluid dynamics of sprays-1992 Freeman scholar lecture. J Fluids Engin 115:345

    Article  Google Scholar 

  • Smith JR, Green RM, Westbrook CK, Pitz WJ (1984) An experimental and modeling study of engine knock. Proc Comb Inst 20:91

    Google Scholar 

  • Smith DA, Frey SF, Stansel DM, Razdan MK (1997) Low emission combustion system for the Allison ATS engine. ASME paper no 97-GT-292

    Google Scholar 

  • Smoluchowski MV (1917) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Loesungen. Z. Phys. Chem. 92, 129

    Google Scholar 

  • Smooke MD (Ed) (1991) Reduced kinetic mechanisms and asymptotic approximations for methane-air flames. Lecture notes in physics 384, Springer, New York

    Google Scholar 

  • Smooke MD, Mitchell RE, Keyes DE (1989) Numerical solution of two-dimensional axisymmetric laminar diffusion flames. Comb Sci Technol 67:85

    Article  Google Scholar 

  • Smoot LD (1993) Fundamentals of coal combustion. Elsevier, Amsterdam/Oxford/New York

    Google Scholar 

  • Solomon PR, Hamblen DG Carangelo RM, Serio MA, Deshpande, GV (1987) A general model of coal devolatilization. ACS paper 58/ WP No 26

    Google Scholar 

  • Spalding DB (1970) Mixing and chemical reaction in steady confined turbulent flames. Proc Comb Inst 13:649

    Google Scholar 

  • Speight JG (1994) The chemistry and technology of coal. Marcel Dekker, Amsterdam/New York

    Google Scholar 

  • Stahl G, Warnatz J (1991) Numerical investigation of strained premixed CH4-air flames up to high pressures. Comb Flame 85:285

    Article  Google Scholar 

  • Stapf P, Maas U, Warnatz J (1991) Detaillierte mathematische Modellierung der Tröpfchenverbrennung. 7. TECFLAM-Seminar „Partikel in Verbrennungsvorgängen“, Karlsruhe, S 125. DLR Stuttgart

    Google Scholar 

  • Stapf P, Maly R, Dwyer HA, Warnatz J (1994) A Numerical Study of Heating, Mixture Formation, and Detailed Combustion Around a Fuel Droplet Under Engine-Like Conditions. Proc. COMODIA, S 343. JSME, Yokohama

    Google Scholar 

  • Stefan J (1874) Sitzungsberichte Akad. Wiss. Wien II 68:325

    Google Scholar 

  • Stein SE, Walker JA, Suryan MM, Fahr A (1991) A new path to benzene in flames. Proc Comb Inst 23:85

    Google Scholar 

  • Strehlow RA (1985) Combustion fundamentals. McGraw-Hill, New York

    Google Scholar 

  • Stull DR, Prophet H (Ed) (1971) JANAF thermochemical tables. U.S. Department of Commerce, Washington DC, and addenda

    Google Scholar 

  • Subramanian VS, Buermann DH, Ibrahim KM, Bachalo WD (1995) Application of an integrated phase Doppler interferometer/rainbow thermometer7point-diffraction interferometer for characterizing burning droplets. Proc Comb Inst 23:495

    Google Scholar 

  • Tait NP, Greenhalgh DA (1992) 2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion. Proc Comb Inst 24:1621

    Google Scholar 

  • Takagi Y (1998) A new era in spark ignition engines featuring high pressure direct injection. Proc Comb Inst 27:2055

    Google Scholar 

  • Takeno T (1995) Transition and structure of jet diffusion flames. Proc Comb Inst 25:1061

    Google Scholar 

  • Takeno T, Nishioka M, Yamashita H (1993) Prediction of NOx emission index of turbulent diffusion flames, in: Takeno T (Ed), Turbulence and molecular processes in combustion, S 375. Elsevier, Amsterdam/London

    Google Scholar 

  • Tien CL, Lienhard JH(1971) Statistical Thermodynamics. Holt, Rinehart, and Winston, New York

    Google Scholar 

  • Thiele M, Warnatz J, Maas U (2000) Geometrical Study of Spark Ignition in Two Dimensions. Comb. Theory and Modelling 4:413

    Article  MATH  Google Scholar 

  • Thome AP (1988) Spectrophysics, 2nd ed, Chapman and Hall, London/New York

    Google Scholar 

  • Thring RH (1989) Homogeneous charge compression ignition (HCCI) engines. SAE paper 892068

    Google Scholar 

  • Tsuji H, Yamaoka I (1967) The counterflow diffusion flame in the forward stagnation region of a porous cylinder. Proc Comb Inst 11:979

    Google Scholar 

  • Tsuji H, Yamaoka I (1971) Structure analysis of counterflow diffusion flames in the forward stagnation region of a porous cylinder. Proc Comb Inst 13:723

    Google Scholar 

  • Turns SR (1996) An introduction to combustion. McGraw-Hill, New York

    Google Scholar 

  • Vagelopoulos CM and Egolfopoulos FN (1998) Direct experimental determination of laminar flame speeds. Proc Comb Inst 27:513

    Google Scholar 

  • Vandsburger U, Kennedy I, Glassman I (1984) Sooting Counterflow Diffusion Flames with Varying Oxygen Index. Comb Sci Technol 39:263

    Article  Google Scholar 

  • von Gersum S, Roth P (1992) Soot oxidation in high temperature N2O/Ar and NO/Ar mixtures. Proc Comb Inst 24:999

    Google Scholar 

  • von Kaiman Th (1930) Mechanische Ähnlichkeit und Turbulenz. Nachrichten der Gesellschaft der Wissenschaften Göttingen, Mathematisch-Physikalische Klasse, S 58

    Google Scholar 

  • Wagner HGg (1979) Soot formation in combustion. Proc Comb Inst 17:3

    Google Scholar 

  • Wagner HG (1981) Mass growth of soot. In: Siegla DC, Smith GW (eds), Particulate carbon formation during combustion. Plenum Press, New York

    Google Scholar 

  • Waldmann L (1947) Der Diffusionsthermoeffekt II. Z Physik 124:175

    Article  Google Scholar 

  • Warnatz J (1978a) Calculation of the structure of laminar flat flames I: Flame velocity of freely propagating ozone decomposition flames. Ber Bunsenges Phys Chem 82:193

    Article  Google Scholar 

  • Warnatz J (1978b) Calculation of the structure of laminar flat flames II: Flame velocity of freely propagating hydrogen-air and hydrogen-oxygen flames. Ber Bunsenges Phys Chem 82:643

    Article  Google Scholar 

  • Warnatz J (1979) The structure of freely propagating and burner-stabilized flames in the H2-CO-O2 system. Ber Bunsenges Phys Chem 83:950

    Article  Google Scholar 

  • Warnatz J (1981a) The structure of laminar alkane-, alkene-, and acetylene flames. Proc Comb Inst 18:369

    Google Scholar 

  • Warnatz J (1981b) Concentration-, pressure-, and temperature dependence of the flame velocity in the hydrogen-oxygen-nitrogen mixtures. Comb Sci Technol 26:203

    Article  Google Scholar 

  • Warnatz J (1981c) Chemistry of stationary and instationary combustion processes. In: Ebert KH, Deuflhard P, Jäger W (Ed) Modelling of chemical reaction systems, Springer, Heidelberg, S 162

    Chapter  Google Scholar 

  • Warnatz J (1982) Influence of transport models and boundary conditions on flame structure. In: Peters N, Warnatz J (Ed), Numerical methods in laminar flame propagation, Vieweg, Wiesbaden

    Google Scholar 

  • Warnatz J (1983) The mechanism of high temperature combustion of propane and butane. Comb Sci Technol 34:177

    Article  Google Scholar 

  • Warnatz J (1984) Critical survey of elementary reaction rate coefficients in the C/H/O system. In: Gardiner WC jr. (Ed) Combustion chemistry. Springer-Verlag, New York

    Google Scholar 

  • Warnatz J (1987) Production and homogeneous selective reduction of NO in combustion processes. In: Zellner R (Ed) Formation, distribution, and chemical transformation of air pollutants. DECHEMA, Frankfurt, S 21

    Google Scholar 

  • Warnatz J (1988) Detailed studies of combustion chemistry. Proceedings of the contractors’ meeting on EC combustion research, EC, Bruxelles, S 172

    Google Scholar 

  • Warnatz J (1990) NOx Formation in high-temperature processes. Eurogas ’90, Tapir, Trondheim, S 303

    Google Scholar 

  • Warnatz J (1991) Simulation of ignition processes. In: Larrouturou B (Ed) Recent advances in combustion modeling. World Scientific, Singapore, S 185

    Google Scholar 

  • Warnatz J (1993) Resolution of gas phase and surface chemistry into elementary reactions. Proc Comb Inst 24:553

    Google Scholar 

  • Warnatz J, Bockhorn H, Möser A, Wenz HW (1983) Experimental investigations and computational simulations of acetylene-oxygen flames from near stoichiometric to sooting conditions. Proc Comb Inst 19:197

    Google Scholar 

  • Warnatz J, Allendorf MD, Kee RJ, Coltrin ME (1994) A model of hydrogen-oxygen combustion on flat-plate platinum catalytist. Combust. Flame 96:393

    Article  Google Scholar 

  • Weinberg FJ (1975) The first half-million years of combustion research and today’s burning problems. Proc Comb Inst 15:1

    Google Scholar 

  • Weinberg FJ (1986) Advanced combustion methods. Academic Press, London/Orlando

    Google Scholar 

  • Wersborg BL, Howard JB, Williams GC (1973) Physical mechanisms in carbon formation in flames. Proc Comb Inst 14:929

    Google Scholar 

  • Westblom U, Aldén M (1989) Simultaneous multiple species detection in a flame using laserinduced fluorescence. Appl Opt 28:2592

    Article  Google Scholar 

  • Westbrook CK, Dryer FL (1981) Chemical kinetics and modeling of combustion processes. Proc Comb Inst 18:749

    Google Scholar 

  • Wieschnowsky U, Bockhorn H, Fetting F (1988) Some new observations concerning the mass growth of soot in premixed hydrocarbon-oxygen flames. Proc Comb Inst 22:343

    Google Scholar 

  • Williams A (1990) Combustion of liquid fuel sprays. Butterworth & Co, London

    Google Scholar 

  • Williams FA (1984) Combustion theory. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Williams WR, Marks CM, Schmidt LD (1992) Steps in the reaction H2 + O2 = H2O on Pt: OH desorption at high temperature. J Chem Phys 96:5922

    Article  Google Scholar 

  • Wilke CR (1950) A viscosity equation for gas mixtures. J Chem Phys 18:517

    Article  Google Scholar 

  • Wolfrum J (1972) Bildung von Stickstoffoxiden bei der Verbrennung. Chemie-Ingenieur-Technik 44:656

    Article  Google Scholar 

  • Wolfrum J (1986) Einsatz von Excimer-und Farbstofflasern zur Analyse von Verbrennungsprozessen VDI Berichte 617:301

    Google Scholar 

  • Wolfrum J (1992) Laser in der Reaktionstechnik-Analytik und Manipulation. Chem Ing-Tech 64, Nr 3:242

    Article  Google Scholar 

  • Wolfram J (1998), Lasers in combustion — From basic theory to practical devices. Proc Comb Inst 27:1

    Google Scholar 

  • Woods IT, Haynes BS (1994) Active sites in soot growth. In: Bockhorn H (ed) Soot formation in combustion. Springer, Berlin/Heidelberg

    Google Scholar 

  • Xu J, Behrendt F, Warnatz J (1994) 2D-LIF Investigation of Early Stages of Flame Kernel Development after Spark Ignition. Proc. COMODIA, S 69. JSME, Yokohama

    Google Scholar 

  • Yang JC, Avedisian CT (1988) The combustion of unsupported heptane/hexadecane mixture droplets at low gravity. Proc Comb Inst 22:2037

    Google Scholar 

  • Zeldovich YB (1946) The oxidation of nitrogen in combustion and explosions. Acta Physicochim. USSR 21:577

    Google Scholar 

  • Zeldovich YB (1949)Zhur Tekhn Fiz 19, 1199; English: NACA Tech Memo No 1296(1950)

    Google Scholar 

  • Zeldovich YB, Frank-Kamenetskii DA (1938) The theory of thermal propagation of flames. Zh Fiz Khim 12:100

    Google Scholar 

  • Zhang QL, O’Brien SC, Heath JR, Liu Y, Curl RF, Kroto HW, Smalley RE (1986) Reactivity of large carbon clusters: Spheroidal carbon shells and their possible relevance to the formation and morphology of soot. J Phys Chem 90:525

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Warnatz, J., Maas, U., Dibble, R.W. (2001). Literaturverzeichnis. In: Verbrennung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56451-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56451-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62658-6

  • Online ISBN: 978-3-642-56451-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics