Skip to main content

Configuration Space of ℝn+1, n > 1

  • Chapter
  • 718 Accesses

Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

In this chapter we shall consider the configuration space \(\mathbb{F}_k (\mathbb{R}^{n + 1} )\) and n < 1. The space is simply connected. The case when n = 1 will be taken up in Chapter IV.

Keywords

  • Symmetric Group
  • Configuration Space
  • Homotopy Class
  • Homotopy Group
  • Principal Bundle

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-56446-8_3
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-56446-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fadell, E.R., Husseini, S.Y. (2001). Configuration Space of ℝn+1, n > 1. In: Geometry and Topology of Configuration Spaces. Springer Monographs in Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56446-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56446-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63077-4

  • Online ISBN: 978-3-642-56446-8

  • eBook Packages: Springer Book Archive