Absorption

  • Volker Ebert
  • Jürgen Wolfrum
Part of the Heat and Mass Transfer book series (HMT)

Abstract

Absorption spectroscopy is one of the oldest techniques of non-intrusive investigation of gaseous media. In this technique the radiation emitted by a source towards a radiation detector is absorbed along its way to the detector. This loss is monitored and analyzed for its dependence on wavelength. Absorption is widely used for industrial gas analysis because of its simplicity, low cost and effectiveness. Nevertheless it is still an area of active research. Up to the late sixties most spectroscopic data was gained only with the help of broadband sources and monochromators or filters, however, with the development of lasers, research gained an important tool to improve the quality of the data and, more importantly, to access completely new areas for the application of non-intrusive optical measurements. These new possibilities are based on the superior properties of laser radiation which include high spectral resolution, very high spectral power density and directivity of the radiation. Chemical analysis and determination of temperature by optical methods in some cases has already been made possible or could be carried out much more specifically with these features, while signal to noise and sensitivity could be enhanced dramatically.

Keywords

Combustion Quartz Furnace Dust Microwave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 189.
    Abramovitz M., Stegun I.A. (1970) Handbook of Mathematical functions. Dover Publications, New YorkGoogle Scholar
  2. 190.
    Adler-Golden S., Lee J., Goldstein N. (1992) Diode Laser Measurements of Temperature-Dependent Line Parameters for Water Vapor Near 820 nm. J Quant Spectrosc Radiat Transfer 48: 527–535ADSCrossRefGoogle Scholar
  3. 191.
    Arroyo M.P., Hanson R.K. (1993) Absorption Measurements of Water Vapor Concentration, Temperature and Line Shape Parameters Using a Tunable InGaAsP Diode Laser. J Appl. Optics 32:6104–6116ADSCrossRefGoogle Scholar
  4. 192.
    Arndt R. (1965) Analytical line shapes for Lorentzian signals broadened by modulation. J Appl Phys 36:2522–2524ADSCrossRefGoogle Scholar
  5. 193.
    Cassidy D.T., Reid J. (1982) High sensitivity detection of trace gases using sweep integration and tunable diode lasers. J Appl Optics 21:2527–2530ADSCrossRefGoogle Scholar
  6. 194.
    Cassidy D.T. (1988) Trace gas detection using 1.3 μm InGaAsP diode laser transmitter modules. J Appl Optics 27:610–614ADSCrossRefGoogle Scholar
  7. 195.
    Cova S., Longini A. (1979) An introduction to signals, noise, and measurements. In: Analytical Laser Spectroscopy, Wiley Interscience, New York, 412–488Google Scholar
  8. 196.
    Davis P.B., Evenson K.M. (1975) Laser magnetic resonance spectroscopy of gaseous free radicals. In: Haroche S., Pebay-Peyroula J.C., Hänsen T.W., Harris S.E. (Eds.) Laser Spectroscopy II, Springer Lecture Notes in Physics, Vol.43Google Scholar
  9. 197.
    Dicke R.H. (1953) The effect of collisions upon the Doppler width of spectral lines. J Phys Rev 89:472–473ADSCrossRefGoogle Scholar
  10. 198.
    Ebert V., Sick V., Wolfrum J. (1996) Einsatz der Lasermeßtechnik zur Diagnostik und Optimierung von technischen Verbrennungsprozessen. Technisches Messen 63:268–277Google Scholar
  11. 199.
    Ebert V., Fitzer J., Gerstenberg I. et al. (1997) Fast In-situ-Monitoring of 02 in a Full-scale Waste Incinerator with NIR-Diode-Lasers. VDI-Berichte 1313:549–554Google Scholar
  12. 200.
    Ebert V., Hess P., Mashni M., Miklos A., Pitz H., Pleban K.U., Schäfer S., Sneider J. (1998a) Sensitive Detection of Methane with a 1.65μm Diode Laser by Photoacoustic and Absorption spectroscopy. J Appl Phys B 66:511–516ADSCrossRefGoogle Scholar
  13. 201.
    Ebert V., Fitzer J., Gerstenberg L, Pleban K.U., Pitz H., Wolfrum J., Jochem M., Martin J. (1998b) Online monitoring of water vapour with a fiber coupled NIR-diode laser spectrometer. In: 5th Intern. Symposium on Gas Analysis by Tunable Diode Lasers, VDI-Berichte 1366:145–154Google Scholar
  14. 202.
    Ebert V., Pleban K.U. and Wolfrum J. (1998c) In-situ Oxygen-Monitoring using Near-Infrared Diode Lasers and Wavelength Modulation Spectroscopy. In: Laser Applications to Chemical and Environmental Analysis, Technical Digest (J Opt Soc Am, Washington DC), 206–209Google Scholar
  15. 203.
    Ebert V., Fitzer J., Gerstenberg L, Pleban K.U., Pitz H., Wolfrum J., Jochem M., Martin J. (1998d) Simultaneous Laser-based In-Situ-Detection of Oxygen and Water in a Waste Incinerator for Active Combustion Control Purposes. In: 27th Symposium (Int.) on Combustion, The Combus-tion Institute, Pittsburgh, 1301–1308Google Scholar
  16. 204.
    Ebert V., Schulz C., Volpp H.R., Wolfrum J., Monkhouse P. (1999) Laser Diagnostics of Combustion Processes. Prom Chemical Dynamics to Technical Devices, Israel Journal of Chemistry 39:1–24Google Scholar
  17. 205.
    Etzkorn T., Muris S., Fitzer J., Wolfrum J. (1993) Determination of absolute methyl and hydroxyl-radical concentrations in a low-pressure methane-oxygen flame. Chem Phys Lett 3/4 208:307–310CrossRefGoogle Scholar
  18. 206.
    Etzkorn T. (1992) Laserspektroskopische Bestimmung absoluter CH3-und OH-Radikalkonzen-trationen in vorgemischten laminaren CH4/O2/NO-Niederdruckflamen. Diplomarbeit, Universi“at HeidelbergGoogle Scholar
  19. 207.
    Galatry L. (1961) Simultaneous effect of Doppler and foreign gas broadening on spectral lines. Phys Rev 122:1218–1223ADSMATHCrossRefGoogle Scholar
  20. 208.
    Gough T.E., Scoles G. (1981) Optothermal infrared spectroscopy. In: McKelar A.R.W., Oka T., Stoichef B.P. Laser Spectrocopy V, Springer Series in Optical Sciences, Vol. 30Google Scholar
  21. 209.
    Grisar R., Riedel W.J., Ball D.R. (1987) A hydrogen fluoride analyzer using pulsed integrative spectroscopy. In: Monitoring of Gaseous Pollutants by Tunable Diode Lasers, Reidel, 153–158Google Scholar
  22. 210.
    Gudeman C.S., Saykally R.J. (1984) Velocity modulation infrared laser spectroscopy of molecular ions. Ann Rev Phys Chem 35:387–418ADSCrossRefGoogle Scholar
  23. 211.
    Hack W., Wagner H.G. (1983) Methoden zur Bestimmung von Radikalzuständen und-konzentrationen in der Gasphase. Z Anal Chem 316:124–134CrossRefGoogle Scholar
  24. 212.
    Harris T.D. (1983) Laser intracavity enhanced spectroscopy. In: Klinger D.S. (Ed.) Ultrasensitive Laserspectroscopy, Academic Press, New YorkGoogle Scholar
  25. 213.
    Herbert F. (1974) Spectral line profile: A generalized Voigt function including collisional narrowing. J Quant Spectrosc Radiat Transfer 14:943–951ADSCrossRefGoogle Scholar
  26. 214.
    Hess P., Pelzl J. (Eds.) (1988) Photoacoustic and Photothermal Phenomena. Springer Series in Optical Sciences, Vol.58Google Scholar
  27. 215.
    Humlicek J. (1979) An efficient method for evaluation of the complex probability function: The Voigt function and its derivatives. JQRST 21:309–313Google Scholar
  28. 216.
    Hurst G.S., Payne M.G. (1988) Principles and Applications of Resonance Ionization Spectroscopy. Hilger, BristolGoogle Scholar
  29. 217.
    Husson N. et al. (1992) Management and study of spectroscopic information: The GEISA program. JQSRT, 5/6, 48:509–518ADSCrossRefGoogle Scholar
  30. 218.
    Jacquinet-Husson N., Ari E., Ballard J. et al. (1998) The 1997 spectroscopic GEISA databank. JQSRT MAY 1999, 62(2):205–254 see also: http://www.ara.polytechnique.fr/alexeiindex.html#overview and http://ara01.polytechnique.fr/registration Google Scholar
  31. 219.
    Langlois S., Birbeck T.P., Hanson R.K. (1994) Diode Laser Measurements of H2O Line Inten-sities and Self-Broadening Coefficients in the 1,4-μm Region. J Mol Spec 163:27–42ADSCrossRefGoogle Scholar
  32. 220.
    Letokhov V.S., Chebotayev V.P. (1977) Nonlinear Laser Spectroscopy. Springer Series Optical Sciences, Vol. 4, Berlin, SpringerGoogle Scholar
  33. 221.
    Letokhov V.S. (1987) Laser Photoionisation Spectroscopy. Academic Press, OrlandoGoogle Scholar
  34. 222.
    Levenson M.D. (1986) Introduction to Nonlinear Laser Spectroscopy. 2nd ed., Academic Press, New YorkGoogle Scholar
  35. 223.
    Lorentz H.A. (1908) Proc Amst Akad Sci 8:591ffGoogle Scholar
  36. 224.
    Meienburg W., Neckel H., Wolfrum J. (1990) In-situ measurement of ammonia with a 13CO2-waveguide laser system. Appl Phys B5L94-98Google Scholar
  37. 225.
    Möller W., Mozhukhin E. and Wagner H.G. (1986) High temperature reactions of CH3: 1. The reaction CH3+H2-¿ CH4+H. Ber Bunsenges Phys Chem 90:854–861CrossRefGoogle Scholar
  38. 226.
    Neckel H., Wolfrum J. (1989) IR Diode laser measurements of the NH3(n2) band at different temperatures. Appl Phys B49:85–89ADSGoogle Scholar
  39. 227.
    Olivero J.J., Longbothum R.L. (1977) Empirical fits to the Voigt line width: A brief review. JQRST 17:233–236Google Scholar
  40. 228.
    Ouyang X., Varghese P.L. (1989) Reliable and efficient program for fitting Galatry and Voigt profiles to spectral data on multiple lines. Appl Optics 28:1538–1545ADSCrossRefGoogle Scholar
  41. 229.
    Pickett H.M. (1980) Effects of velocity averaging on the shapes of absorption lines. J Chem Phys 73: 6090–6094ADSCrossRefGoogle Scholar
  42. 230.
    Pickett H.M., Poynter R.L., Cohen E.A. et al. (1998) Submillimeter, Millimeter, and Microwave Spectral Line Catalog. JQSRT 60:883–890 and http://spec.jpl.nasa.gov/ ADSCrossRefGoogle Scholar
  43. 231.
    Pierluissi J.H., Vanderwood P.C., Gomez R.B. (1977) Fast calculational algorithm for the Voigt profile. JQSRT 18:555–558ADSCrossRefGoogle Scholar
  44. 232.
    Pine A.S. (1980) Collisional narrowing of HF fundamental band spectral lines by Neon and Argon. J Mol Spectr 82:435–448ADSCrossRefGoogle Scholar
  45. 233.
    Poynter R.L. (1981) Submillimeter, millimeter and microwave spectral line catalogue. JPL Publication Rev.1, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 23–80Google Scholar
  46. 234.
    Radcig A.A. (1985) Reference Data on Atoms, Molecules and Ions. Springer, New York, HeidelbergCrossRefGoogle Scholar
  47. 235.
    Reid J., Labrie D. (1981) Second harmonic detection with Tunable Diode Lasers-Comparison of experiment and theory. Appl Phys B26:203–210ADSGoogle Scholar
  48. 236.
    Riedel W.J. (1976) Infrared gas spectroscopy system using pulsed lead chalcogenide diode lasers. SPIE Proc 99:17–21ADSCrossRefGoogle Scholar
  49. 237.
    Ritter K.J., Wilkerson, T.D. (1987) High-Resolution resolution Spectroscopy of the Oxygen A-Band. J of Molecular Spectroscopy 121:1–19ADSCrossRefGoogle Scholar
  50. 238.
    Rothman L.S. et al. (1992) The HITRAN molecular data-base, editions of 1991 and 1992. JQSRT 48: 5/6: 469–508ADSCrossRefGoogle Scholar
  51. 239.
    Rothman L.S., Rinsland CR, Goldman A. et al. (1998) The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation). JQSRT 60: 5: 665–710 and www.hitran.com and links thereinADSCrossRefGoogle Scholar
  52. 240.
    Schuler F., Rampp F., Martin J., Wolfrum J. (1994) TACCOS-A Thermography-Assisted Combustion Control System for Waste Incinerators. Comb and Flame 99:431–439CrossRefGoogle Scholar
  53. 241.
    Sick V. (1992) Einsatz hochauflösender Laserspektroskopie zur quantitativen Analyse von Ge-genstrom-Diffusionsflammen. PhD-Thesis, Universität HeidelbergGoogle Scholar
  54. 242.
    Silver J.A. (1992) Frequency modulation spectroscopy for trace species detection: Theory and comparison among experimental methods. Appl Optics 31:707–717, (1992) + errata in Appl. Optics, 31:4927ADSCrossRefGoogle Scholar
  55. 243.
    Sobel’man I.I., Vainshtein L.A., Yukov E.A. (1995) Excitation of Atoms and Broadening of Spectral Lines. 2nd edition, Springer Series on Atoms and Plasmas Vol.15, Springer-Verlag, HeidelbergGoogle Scholar
  56. 244.
    Toth R.A. (1994) Measurements of H 216 O Line Positions and Strengths: 11610 to 12861 cm -1. J Mol Spec 166:176–183ADSCrossRefGoogle Scholar
  57. 245.
    Travis J.C. (1985) Analytical optogalvanic spectroscopy in flames. In: Martel-lucci S., Chester A.N. (Eds.) Analytical Laser Spectroscopy, Plenum Press, New YorkGoogle Scholar
  58. 246.
    Ueda Y., Shimoda K. (1975) Infrared Laser Stark Spectroscopy. In: Haroche S., Pebay-Peyroula J.C, Hänsen T.W., Harris S.E. (Eds.) Laser Spectroscopy II, Springer Lecture Notes Physics, Vol.43, SpringerGoogle Scholar
  59. 247.
    VanVleck J.H., Weisskopf V.F. (1945) On the shape of collision-broadened lines. Rev Mod Phys 17: 227–235ADSCrossRefGoogle Scholar
  60. 248.
    Varghese P.L., Hanson R.K. (1984) Collisional narrowing effects on spectral line shapes meas-ured at high resolution. Appl Optics 14:2376–2385ADSCrossRefGoogle Scholar
  61. 249.
    Wahlquvist H. (1961) Modulation broadening of unsaturated Lorentzian lines. J Chem Phys 35:1708–1710ADSCrossRefGoogle Scholar
  62. 250.
    Weber W.H., Tanaka K., Kanaka T. (feature eds.) (1987) Stark and Zeeman techniques in laser spectroscopy. J Opt Soc B4:1141–1226Google Scholar
  63. 251.
    Werle P. (1996a) Spectroscopic trace gas analysis using semiconductor diode lasers. Spectro-chimica Acta Part A52:805–822ADSCrossRefGoogle Scholar
  64. 252.
    Werle P. (1996b) Tunable Diode laser absorption spectroscopy: recent findings and novel approaches. Infrared Physics and Technology 37:59–66ADSCrossRefGoogle Scholar
  65. 253.
    Wolfrum J. (1992) Laser in der Reaktiontechnik-Analytik und Manipulation. Chem.-Ing.-Tech. 64 3:242–252CrossRefGoogle Scholar
  66. 254.
    Zink L.R., Jennings D.A., Evenson K.M., Sasso A., Inguscio M. (1987) Stark spectroscopy using far-infrared radiation. J Opt Soc Am B 4:1173–1176ADSCrossRefGoogle Scholar

General Reading

  1. 255.
    Atkins P.W. (1996) Physikalische Chemie. 2. Aufl., Wiley-VCH, WeinheimGoogle Scholar
  2. 256.
    Graybeal J.D. (1988) Molecular Spectroscopy. McGraw-HillGoogle Scholar
  3. 257.
    Haken H., Wolf H.C. (1992) “Molekülphysik und Quantenchemie“ and “ Atomphysik“, SpringerGoogle Scholar
  4. 258.
    Kuhn H.G (1969) Atomic Spectra. LongmanGoogle Scholar
  5. 259.
    Thorne A.P. (1988) Speetrophysics. 2nd edn. Chapman and Hall, London, New YorkCrossRefGoogle Scholar
  6. 260.
    Shimoda K. (1976) Line broadening and narrowing effects. In: Shimoda K. (Ed.) High Resolution Laser Spectros-copy, Topics in Applied Physics Vol. 13, Springer, BerlinCrossRefGoogle Scholar
  7. 261.
    Walther H. (1976) Laser Spectroscopy of Atoms and Molecules. Topics in Applied Physics Vol.2, SpringerGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Volker Ebert
  • Jürgen Wolfrum

There are no affiliations available

Personalised recommendations