Advertisement

Wirkungen auf Pflanzen und Biozönosen

  • B. Degen
  • F. Scholz
  • A. Fangmeier
  • R. Guderian
  • H.-J. Jäger
  • H. Mehlhorn
Chapter
  • 231 Downloads

Zusammenfassung

Die derzeitige Angepaßtheit und die Fähigkeit, sich an zeitlich und räumlich variierende Umweltfaktoren anzupaßen, bestimmen die Persistenz der Populationen. Angepaßtheit und Anpassungsfähigkeit einer Population werden durch ihre genetische Zusammensetzung festgelegt. Die Bäume sind äußerst langlebige, ortsfeste Organismen, das bedeutet, sie werden in ihrem Leben vielfältigen und wechselnden Umweltbedingungen ausgesetzt, ohne daß sie den Streßbedingungen ausweichen können. Mehr als andere Organismen sind Gehölzarten daher auf eine hohe Anpassungsfähigkeit angewiesen (Bergmann u. Scholz 1985, 1989; Gregorius et al. 1979, 1985). Hierzu ist eine hohe genetische Vielfalt auf der Ebene des Individuums und auf der Ebene der Population notwendig. In vielen Untersuchungen konnte gezeigt werden, daß Bäume im Vergleich zu anderen Arten eine außergewöhnlich hohe genetische Variation aufweisen (Ledig 1986; Mitton 1983; Hamrick u. Godt 1990; Müller-Starck u. Ziehe 1991).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anonymus (1984) Resolution der Arbeitsgemeinschaft Forstgenetik und Forstpflanzenzüchtung: Forstliches Erbgut in Gefahr. Allg Forstz 32:1261Google Scholar
  2. Bahtiyarova RM, Yanbayev JA, Shigapov ZH (1994) Genetic structure of pine populations under industrial pollution. Proc Internat Symp Forest Genetics: Reproduction and Rational Use of Genetic Resources, 4–11 Aug. 1991, Ufa, Russia, pp 103–109Google Scholar
  3. Bahtiyarova RM, Starova NV, Yanbayev JA (1995) Genetic changes in populations of scots pine growing under industrial air pollution conditions. Silvae Genetica 44:157–160Google Scholar
  4. Bergmann F, Scholz F (1985) Effects of selection pressure by SO2 pollution on genetic structures of Norway spruce (Picea abies (L.) Karst.). In: Gregorius H-R (ed) Population genetics in forestry. Lecture notes in biomathematics, vol 60, Springer-Verlag, Berlin Heidelberg New York, pp 267–275Google Scholar
  5. Bergmann F, Scholz F (1989) Selection effects of air pollution in Norway spruce (Picea abies) populations. In: Scholz F, Gregorius H-R, Rudin D (eds) Genetic effects of air pollutants in forest tree populations. Springer-Verlag, Berlin Heidelberg New York, pp 143–160Google Scholar
  6. Bergmann F, Gregorius H-R, Larsen JB (1990) Levels of genetic variation in European silver fir (Abies alba Mill.) — are they related to the species decline? Genetica 82:1–10Google Scholar
  7. Cox RM (1989) Natural variation in sensitivity of reproductive processes in some boreal forest trees to acidity. In: Scholz F, Gregorius H-R, Rudin D (eds) Genetic effects of air pollutants in forest tree populations. Springer-Verlag, Berlin Heidelberg New York, pp 77–86Google Scholar
  8. Cufar K, Robic D, Torelli N, Kermavnar A (1994) Blütenbildung unterschiedlich geschädigter Weißtannen in Slowenien. Forst Holz 49(2):34–36Google Scholar
  9. Degen B, Scholz F (1997) Abschlußbericht Ökologische Genetik. In: Umweltbundesamt (Hrsg) Auswertung der Waldschadensforschungsergebnisse (1982–1992) zur Aufklärung komplexer Ursache-Wirkungsbeziehungen mit Hilfe systemanalytischer Methoden. Erich Schmidt, BerlinGoogle Scholar
  10. Degen B, Gregorius H-R, Scholz F (1996) ECO-GENE, a model for simulation studies on the spatial and temporal dynamics of genetic structures of tree populations. Silvae Genetica 45:323–329Google Scholar
  11. Geburek T, Scholz F (1989) Response of Picea abies (L.) Karst. Provenances of aluminium in hydroponics. In: Scholz F, Gregorius H-R, Rudin D (eds) Genetic effects of air pollutants in forest tree populations. Springer-Verlag, Berlin Heidelberg New York, pp 55–65Google Scholar
  12. Gora V, Starke R, Ziehe M, König J, Müller-Starck G, Lunderstädt J (1994) Influence of genetic structures and silvicultural treatments in a beech stand (Fagus sylvatica) on the population dynamics of beech scale (Cryptococcus fagisuga). For Genet 1(3):157–164Google Scholar
  13. Gregorius H-R (1985) Erhaltung der Anpassungsfähigkeit von Baumpopulationen. Ber d 4. Arbeitstagung 1985, Forum Genetik-Wald-Forstwirtschaft, Göttingen, S 13–22Google Scholar
  14. Gregorius H-R (1989) The attribution of phenotypic variation to genetic or environmental variation in ecological studies. In: Scholz F, Gregorius H-R, Rudin D (eds) Genetic effects of air pollutants in forest tree populations. Springer-Verlag, Berlin Heidelberg New York, pp 3–15Google Scholar
  15. Gregorius H-R, Ziehe M (1995) Detecting independence in viability selection on two traits. Heredity 74:70–79Google Scholar
  16. Gregorius H-R, Bergmann F, Müller-Starck G, Hattemer HH (1979) Genetische Implikationen waldbaulicher und züchterischer Maßnahmen. Allg Forst J Ztg 150(2):30–41Google Scholar
  17. Gregorius H-R, Hattemer H H, Bergmann F, Müller-Starck G (1985) Umweltbelastung und Anpassungsfähigkeit von Baumpopulationen. Silvae Genetica 34(6):230–241Google Scholar
  18. Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer Associates, Sunderland, pp 43–63Google Scholar
  19. Kalashnik NA, Presnukhina LP, Likhonos NA (1994) Caryotypical variability of pine in the South Urals. Proc Internat Symp Forest Genetics: reproduction and rational use of genetic resources, 4–11 Aug 1991, Ufa, Russia, pp 58–73Google Scholar
  20. Köhler H, Stratmann J (1986) Wachstum und Benadelung von Fichten im Westharz. Forst Holzwirt 6:152–157Google Scholar
  21. Konnert M (1992) Genetische Untersuchungen in geschädigten Weißtannenbeständen (Abies alba Mill.) Südwestdeutschlands. Dissertation, Forstl Fakultät, Univ Göttingen, 119 SGoogle Scholar
  22. Larsen JB (1988) Waldbauliehe Probleme und Genökologie der Weißtanne (Abies alba Mill.). Allg Forst J Ztg 160(2/3):39–43Google Scholar
  23. Ledig FT (1986) Heterozygosity, heterosis, and fitness in outcrossing plants. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity, vol 5. Sinauer Associates, Sunderland, pp 77–104Google Scholar
  24. Melchior GH, Becker A, Behm A, Dörflinger H, Franke A, Kleinschmit J, Muhs HJ, Schmitt HP, Stephan BR, Tabel U, Weisgerber H, Widmaier T (1989) Konzept zur Erhaltung forstlicher Genressourcen in der Bundesrepublik Deutschland. Forst Holz 44:379–404Google Scholar
  25. Mitton JB (1983) Conifers. In: Tanskley SD, Orton TJ (eds) Isozymes in plant genetics and breeding, vol B. Elsevier Science Publishers, Amsterdam, pp 443–472Google Scholar
  26. Müller M, Guttenberger H, Schöggl W, Grill D, Druskovic B (1991) Eine cytogenetisehe Methode zur Vitalitätsprüfung von Fichten.VDI Ber 901:337–347Google Scholar
  27. Müller-Starck G (1985) Genetic differences between „tolerant“ and „sensitive“ beeches (Fagus sylvatica L.) in an environmentally stressed adult forest stand. Silvae Genetica 34(6):241–247Google Scholar
  28. Müller-Starck G (1989) Untersuchungen über Wirkungen von Immissionsbelastungen auf die genetischen Strukturen von Buchenpopulationen (Fagus sylvatica L.). Abschlußbericht d UBA-Vorhabens 106 07 046/23:75SGoogle Scholar
  29. Müller-Starck G (1993) Auswirkungen von Umweltbelastungen auf genetische Strukturen von Waldbeständen am Beispiel der Buche (Fagus sylvatica L.). HabilitationsschriftGoogle Scholar
  30. Müller-Starck G, Hattemer HH (1989) Genetische Auswirkungen von Umweltstreß auf Altbestände und Jungwuchs der Buche (Fagus sylvatica L.). Forstarchiv 60:17–22Google Scholar
  31. Müller-Starck G, Ziehe M (1991) Genetic variation in european populations of forest trees. Sauerl änder, Frankfurt aMGoogle Scholar
  32. Pelz E (1963) Untersuchungen über die Fruktifikation rauchgeschädigter Fichtenbestände. Arch Forstwesen 12(10):1066–1077Google Scholar
  33. Scholz F, Gregorius H-R, Rudin D (1989) Genetic effects of air pollutants in forest tree populations. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  34. Scholz F, Braun H, Bergmann F, Llamas-Goméz L, Ziegenhagen B (1994) Untersuchungen über ökologisch-genetische Anpassungsvorgänge bei der Tanne (Abies alba Mill.) in unterschiedlich immissionsbelasteten Regionen unter besonderer Berücksichtigung des Erzgebirges. Abschlußbericht des UBA-F+E-Vorhabens Waldschäden/Luftverunreinigungen, Nr 10805046/56Google Scholar
  35. Speisberg G (1988) Zur Frage Benadelung und Fruktifikation bei der Fichte. Forst Holz 9:218–220Google Scholar
  36. Stutz HP, Frehner E, Burkart A (1987) Nadelverlust der Fichte und Samenqualität. Forstw Centralbl 106(2):68–77Google Scholar
  37. Thormann R, Scholz F (1992) Novel forest decline affects seed production and genetic structure of a Scots pine population (abstract). Proc IUFRO Centennial, Berlin-Eberswalde, 31 Aug–4 Sept 1992, p 394Google Scholar
  38. Venne H (1992) Experimentelle Untersuchungen über Immissionswirkungen auf Reproduktionsvorgänge bei Waldbäumen. Abschlußbericht des UBA-F+E-Vorhabens Waldschäden/Luftverunreinigungen, Nr 108 03 046/25:76 SGoogle Scholar
  39. Venne H, Scholz F, Vornweg A (1989) Effects of air pollutants on reproductive processes of poplar (Populus spp.) and Scots pine (Pinus sylvestris L.). In: Scholz F, Gregorius H-R, Rudin D (eds) Genetic effects of air pollutants in forest tree populations. Springer-Verlag, Berlin Heidelberg New York, pp 89–103Google Scholar

Literatur

  1. Archibold OW (1978) Vegetation recovery following pollution control at Trail, British Columbia. Can J Bot 56:1625–1637Google Scholar
  2. Ashmore MR, Thwaites RH, Ainsworth N, Cousins DA, Power SA, Morton AJ (1995) Effects of ozone on calcareous gra ssland communities. Water Air Soil Pollut 85:1527–1532Google Scholar
  3. Austin MP (1990) Community theory and competition in vegetation. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego, pp 215–238Google Scholar
  4. Barbo DN, Chappelka AH, Somers GL, Miller-Goodman MS, Stolte K (1998) Diversity of an early successional community as influenced by ozone. New Phytol 138:653–662Google Scholar
  5. Bennett JP, Runeekles VC (1977) Effects of low levels of ozone on plant competition. J Appl Ecol 14:877–880Google Scholar
  6. Bertness MD, Callaway R (1994) Positive interactions in communities. Trend Ecol Evolut 9:191–193Google Scholar
  7. Böhling N (1992) Floristischer Wandel von Waldgesellschaften. Mögliche Auswirkungen von Bodenversauerung und Nährstoffanreicherung in der südlichen Eilenriede (Stadtwald Hannover). Natursch Landschaftsplan 24:16–19Google Scholar
  8. Bürger R (1988) Veränderungen der Bodenvegetation in Wald-und Forstgesellschaften des mittleren und südlichen Schwarzwaldes. KfK-PEF 52, KarlsruheGoogle Scholar
  9. Callaway RM (1995) Positive interactions among plants. Bot Rev 61:306–349Google Scholar
  10. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965Google Scholar
  11. Cornelius R, Markan K (1984) Interferenz von Urtica urens L. und Chenopodium album L. unter Ozoneinfluß. Angew Bot 58:195–206Google Scholar
  12. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18. Erich Goltze, Göttingen, 248ppGoogle Scholar
  13. Evans PA, Ashmore MR (1992) The effects of ambient air on a semi-natural grassland community. Agr Ecosyst Environ 38:91–97Google Scholar
  14. Falkengren-Grerup U (1989) Soil acidification and its impact on ground vegetation. AMBIO 18:179–183Google Scholar
  15. Fangmeier A (1989) Effects of open-top fumigations with SO2, NO2, and ozone on the native herb layer of a beech forest. Environ Exp Bot 29:199–213Google Scholar
  16. Fangmeier A, Hadwiger-Fangmeier A, van der Eerden LJM, Jäger HJ (1994) Effects of atmospheric ammonia on vegetation — a review. Environ Pollut 86:43–82Google Scholar
  17. Firbank LG, Watkinson AR (1990) On the effects of competition: from monocultures to mixtures. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego, pp 165–192Google Scholar
  18. Freedman B, Hutchinson TC (1980) Long-term effects of smelter pollution at Sudbury, Ontario, on forest community composition. Can J Bot 58:2123–2140Google Scholar
  19. Gigon A (1987) A hierarchic approach in causal ecosystem analysis. The calcifugecalcicole problem in Alpine grasslands. In: Schulze E-D, Zwölfer H (eds) Ecological studies. Springer-Verlag, Berlin Heidelberg New York, pp 228–244Google Scholar
  20. Gigon A, Ryser P (1986) Positive Interaktionen zwischen Pflanzenarten. I. Definition und Beispiele aus Grünland-Ökosystemen. Veröff Geobot Inst ETH, Stiftung Rübel 87:372–387Google Scholar
  21. Glatzel G, Sonderegger E, Kazda M, Puxbaum H (1983) Bodenveränderung durch schadstoffangereicherte Stammablaufniederschläge in Buchenbeständen des Wienerwaldes. Allg Forst Ztschr 38:693–694Google Scholar
  22. Glavac V, Koenies H (1986) Kleinräumige Konfiguration wichtiger bodenchemischer Mebgröben in dem vom Stammablaufwasser beeinflubten Bodenbereich alter Buchen. Verh Ges Oekol 14:293–298Google Scholar
  23. Glavac V, Krause A, Wolff-Straub R (1970) Über die Verteilung der Hainsimse (Luzula luzuloides) im Stammfußbereich der Buche im Siebengebirge bei Bonn. Schriftenr Vegetationskd 5:187–192Google Scholar
  24. Goldberg DE, Rajaniemi T, Gurevitch J, Stewart-Oaten A (1999) Empirical approaches to quantifying interaction intensity: competition and facilitation along productivity gradients. Ecology 80:1118–1131Google Scholar
  25. Guderian R (1967) Reaktionen von Pflanzen gemeinschaften des Feldfutterbaus auf Schwefeldioxideinwirkungen. Schriftenreihe der Landesanstalt für Immissions-und Bodennutzungsschutz des Landes Nordrein-Westfalen, 4, 80–100, EssenGoogle Scholar
  26. Guderian R, Küppers K (1980) Response of plant communities to air pollution. In: Anonymous (ed) Proceedings of the symposium on effects of air pollutants on mediterranean and temperate forest ecosystems, 22–27 June, Riverside, California. USDA Forest Service, Berkeley, California, pp 187–199Google Scholar
  27. Guderian R, Tingey DT (1987) Notwendigkeit und Ableitung von Grenzwerten für Stickstoffoxide. UBA-Berichte 1/87. Erich Schmidt Verlag, BerlinGoogle Scholar
  28. Guderian R, Tingey DT, Rabe R (1985) Effects of photochemical oxidants on plants. In: Guderian R (ed) Air pollution by photochemical oxidants. Formation, transport, control, and effects on plants. Ecol Stud 52. Springer-Verlag, Berlin Heidelberg New York, pp 127–346Google Scholar
  29. Guderian R, Stratmann H (1962) Freilandversuche zur Ermittlung von Schwefeldioxidwirkungen auf die Vegetation. Teil I. Übersicht zur Versuchsmethodik und Versuchsauswertung. Forschungsbericht des Landes Nordrhein-Westfalen Nr 1118, Westdeutscher Verlag, KölnGoogle Scholar
  30. Guderian R, Stratmann H (1968) Freilandversuche zur Ermittlung von Schwefeldioxidwirkungen auf die Vegetation. Teil III. Grenzwerte schädlicher SO2-Immissionen für Obst-und Forstkulturen sowie für landwirtschaftliche und gärtnerische Pflanzenarten. Forschungsbericht des Landes Nordrhein-Westfalen Nr 1920, Westdeutscher Verlag, KölnGoogle Scholar
  31. Gunn J, Keller W, Negusanti J, Potvin R, Beckett P, Winterhalder K (1995) Ecosystem recovery after emission reductions: Sudbury, Canada. Water Air Soil Pollut 85:1783–1788Google Scholar
  32. Hacker SD, Gaines SD (1997) Some implications of direct positive interactions for community species diversity. Ecology 78:1990–2003Google Scholar
  33. Halbwachs G, Kisser J (1967) Durch Rauchimmissionen bedingter Zwergwuchs bei Fichte und Birke. Centralbl Ges Forstwesen 84:156–173Google Scholar
  34. Harkow R, Brennan E (1979) An ecophysiological analysis of the response of trees to oxidant pollution. J Air Poll Contr Assoc 29:157–161Google Scholar
  35. Harward MR, Treshow M (1975) Impact of ozone on the growth and reproduction of understory plants in the aspen zone of the western USA. Environ Conserv 2:17–24Google Scholar
  36. Holmgren M, Scheffer M, Huston MA (1997) The interplay of facilitation and competition in plant communities. Ecology 78:1966–1975Google Scholar
  37. Jochheim H (1986) Einfluß des Stammablaufwassers auf den Pflanzenbewuchs und den chemischen Bodenzustand im Oberboden von Altbuchenbeständen. Verh Ges OekoI 14:299–308Google Scholar
  38. Kozlowski TT (1985) SO2 effects on plant community structure. In: Winner WE, Mooney HA, Goldstein RA (eds) Sulfur dioxide and vegetation. Stanford University Press, Stanford, California, pp 431–453Google Scholar
  39. Küppers K (1986) Wirkungen von Äthen auf Modellpflanzengemeinschaften. Verh Ges Oekol 14:361–371Google Scholar
  40. Küppers K (1987) Modell-Pflanzengemeinschaften zur Erfassung von Immissionswirkungen. VDI-Ber 609:581–596Google Scholar
  41. McClenahen JR (1978) Community changes in a deciduous forest exposed to air. pollution. Can J For Res 8:432–438Google Scholar
  42. Miller PR (1973) Oxidant-induced community change in a mixed conifer forest. In: Naegele JA (ed) Air pollution damage to vegetation. Adv Chem Ser 12:101–117Google Scholar
  43. Rodenkirchen H (1992) Efects of acidic precipitation, fertilization and liming on the ground vegetation in coniferous forest of southern Germany. Water Air Soil Pollut 61:279–294Google Scholar
  44. Rost-Siebert K (1986) Feststellung von Veränderungen in der Bodenvegetation und im chemischen Oberbodenzustand während der letzten Jahrzehnte. In: Anonymous (Hrsg) Querschnittsseminar Bioindikation, 28–29 Nov 1985. UBA-Texte 18/86, Berlin, S 246–256Google Scholar
  45. Smith WH (1974) Air pollution — effects on the structure and function of the temperate forest ecosystem. Environ Pollut 6:111–129Google Scholar
  46. Steubing L, Fangmeier A (1986) Immissionssituation der Waldbodenvegetation: Immissionsbelastung. Allg Forst Zeitsehr 41:469–471Google Scholar
  47. Steubing L, Fangmeier A (1991) Gaseous air pollutants and forest floor vegetation — a case study at different levels of integration. In: Esser G, Overdieck D (eds) Modern ecology: basic and applied aspects. Elsevier, Amsterdam, pp 539–569Google Scholar
  48. Thienemann A (1956) Leben und Umwelt: vom Gesamthaushalt der Natur. Rowohlt, HamburgGoogle Scholar
  49. Trautmann W, Krause A, Wolff-Straub R (1970) Veränderungen der Bodenvegetation in Kiefernforsten als Folge industrieller Luftverunreinigungen im Raum Mannheim-Ludwigshafen. Schriftenr Vegetationskd 5:193–207Google Scholar
  50. Treshow M, Stewart D (1973) Ozone sensitivity of plants in natural communities. Biol Conserv 5:209–214Google Scholar
  51. Tyler G (1987) Probable effects of soil acidification and nitrogen deposition on the floristic composition of oak (Quercus robur L.) forest. Flora 179:165–170Google Scholar
  52. von Schroeder J, Reuss C (1873) Die Beschädigung der Vegetation durch Rauch und die Oberharzer Hüttenrauchschäden. Parey, BerlinGoogle Scholar
  53. van Haut H, Stratmann H (1969) Farbtafelatlas über Sehwefeldioxid-Wirkungen an Pflanzen. Girardet, EssenGoogle Scholar
  54. Westman WE (1979) Oxidant effeets on Californian coastal sage serub. Science 295:1001–1003Google Scholar
  55. Winner WE, Bewley JD (1978) Contrasts between bryophyte and vaseular plant synecological responses in an SO2-stressed white spruce association in Central Alberta. Oecologia 33:311–325Google Scholar
  56. Wittig R, Ballaeh H-J, Brandt CJ (1985) Increase of number of acid indicators in the herb layer of the millet-grass-beech forest of the Westfalian Bight. Angew Bot 59:219–232Google Scholar
  57. Wittig R, Neite H (1985) Acid indicators around the trunk base of Fagus silvatica in limestone and loess beechwoods: distribution pattern and phytosociological problems. Vegetatio 64:113–119Google Scholar
  58. Wolak J (1971) Studies on the industroclimax in Poland. Methods for the identification and evaluation of air pollution injuries to forests. Proe xv JUFRO Congress, WienGoogle Scholar
  59. Wolak J (1979) Reaction des ecosystemes a la pollution subnecrotique. Symposium on the effeets of air-borne pollution on vegetation, 20–24 Aug, Warshaw (Poland)Google Scholar

Literatur

  1. Aminu-Kano M, Mc Neill S, Hails RS (1991) Pollutant, plant and pest interactions: the grain aphid Sitobion avenae (F). Agric Ecosys Environ 33:233–243Google Scholar
  2. Ayres PG (1991) Growth responses induced by pathogens and other stresses. In: Mooney HA et al. (eds) Responses of plants to multiple stresses. Academic Press, San Diego, 227–248Google Scholar
  3. Bailey JA, Mansfield JW (1982) Phytoalexins. Blackie, GlasgowGoogle Scholar
  4. Bevan RJ, Greenhalgh GN (1976) Rhytisma acerinum as a biological indicator of pollution. Environ Pollut 10:271–285Google Scholar
  5. Bolsinger M, Flückiger W (1987) Enhanced aphid infestation at motorways: the role of ambient air pollution. Entomol Exp Appl 45:237–243Google Scholar
  6. Bolsinger M, Flückiger W (1989) Ambient air pollution induced changes in amino acid pattern of phloem sap in host plants — relevance to aphid infestation. Environ Pollut 56:209–216Google Scholar
  7. Borgmann W (1930) Schutz gegen Rauchschäden. In: Heesw-Beck G (Hrsg) Forstschutz, Bd 2.Neudamm Verlag, S 106–141Google Scholar
  8. Brown VC, Ashmore MR, McNeill (1993) Experimental investigations ofthe effects of air pollution and aphids on coniferous trees. Forstw Centralbl 112:128–132Google Scholar
  9. Bücker J (1991) Immissionsbedingte Störungen im Kohlenhydrathaushalt junger Pappeln und Fichten. Verlag Westarp Wissenschaften, MagdeburgGoogle Scholar
  10. Bücker J, Ballach HJ (1992) Alterations in carbohydrate levels in leaves of Populus due to ambient air pollution. Physiol Plant 86:512–517Google Scholar
  11. Butin H (1983) Krankheiten der Wald-und Parkbäume. Thieme Verlag, StuttgartGoogle Scholar
  12. Costonis AC (1968) The relationship of ozone, Lophodermium pinastri and Pullularia pullulans to needle blight of eastern white pine. Dissertation, Cornell Universität, Ithaca, New YorkGoogle Scholar
  13. Davis DD, Smith SH (1974) Reduction of ozone-sensivity of pinto bean by Bean Common Mosaic Virus. Phytopathol 64:383–385Google Scholar
  14. Dohmen GP (1987a) Über den Einfluß von Luftverunreinigungen auf Wirt/ Parasit-Interaktionen. Diss, TU MünchenGoogle Scholar
  15. Dohmen GP (1987b) Luftverschmutzung bee influßt das Wachstum von Blattläusen. Mitt Dtsch Gesellsch Allg Angew Ent 5:63–65Google Scholar
  16. Fehrmann H, von Tiedemann A, Fabian P (1986) Predisposition of wheat and barley to fungalleaf attack by preinocultative treatment with ozone and sulphur dioxide. J Plant Dis Protect 93:313–318Google Scholar
  17. Fenn ME (1990) Black stain root disease in ozone-stressed ponderosa pine. Plant Dis 74:426–430Google Scholar
  18. Flückiger W, Oertli JJ, Flückiger-Keller H, Braun S (1979) Premature senescence in plants along a motorway. Environ Pollut 18:171–176Google Scholar
  19. Führer E (1985) Air pollution and the incidence of forest insect problems. J Appl Entomol 99:371–377Google Scholar
  20. Gerlach C (1998) Beitrag zur Lebensweise unserer beiden Harzrüsselkäfer Pissodes harcyniae und scabricollis. Forst Naturw Zeitsehr 7:137–147Google Scholar
  21. Grzywacz A, Wazny J (1973) The impact of industrial air pollutants on the occurrence of several important pathogenic fungi of forest trees in Poland. Eur J For Pathol 3:129–141Google Scholar
  22. Guderian R, Ballach H-J, Klumpp A, Klumpp G, Küppers K, Vogels K, Willenberg IM (1987) Reactions of Norway spruce to air pollution in fumigation experiments and in damaged forest stands. Proc US/FRG Res Symp: effects of atmospheric pollutants on the spruce-fir forests of the eastern United States and the Federal Republic of Germany, Burlington, VermontGoogle Scholar
  23. Guderian R, Tingey DT, Rabe R (1985) Effects of photochemical oxidants on plants. In: Guderian R (ed) Air pollution by photochemical oxidants. Springer-Verlag, Berlin Heidelberg New York, pp 129–296Google Scholar
  24. Guderian R, Stratmann H (1962) Freilandversuche zur Ermittlung von Schwefldioxidwirkungen auf die Vegetation. Westdeutscher Verlag, KölnGoogle Scholar
  25. Guderian R, Wienhaus O (1996) „Neuartige Waldschäden“ und Luftverunreinigungen aus gegenwärtiger Sicht. Deutscher Forstverein, Jahresbericht 1996, S 181–200Google Scholar
  26. Hampp R, Schäffer C (1995) Mycorrhiza — Carbohydrate and energy metabolism. Mycorrhiza, Springer-Verlag, Berlin Heidelberg New York, pp 267–296Google Scholar
  27. Heagle AS (1970) Effect of low level ozone fumigation on crown rust of oats. Phytopathology 60:252–254Google Scholar
  28. Heagle AS (1973) Interactions between air pollutants and plant parasites. Annu Rev Phytopathol 11:365–388Google Scholar
  29. Heagle AS, Key LW (1973a) Effect of ozone on the wheat stern tust fungus. Phytopathology 63:397–400Google Scholar
  30. Heagle AS (1982) Interaction between air pollutants and parasitic plant diseases. In: Unsworth MH (ed) Effects of gaseous air pollution in agriculture and horticulture, pp 333–348Google Scholar
  31. Heagle AS, Key LW (1973 b) Effect of Puccinia graminis f. sp.tritici on ozone injury in wheat. Phytopathology 63:609–613Google Scholar
  32. Heagle AS, Strickland A (1972) Reaction of Erysiphe graminis f. sp. hordei to low levels of ozone. Phytopathology 62:1144–1148Google Scholar
  33. Heath RL, Castillo FJ (1988) Membrane disturbances in response to air pollutants. In: Schulte-Hostede S et al (eds) Air pollution and plant metabolism. Elsevier Appl Sei, London, pp 55–75Google Scholar
  34. Heliövaara K (1986) Occurence of Petrova resinella (Lepidoptera, Tortricidae) in a gradient of industrial air pollutions. Silva Fennica 20:83–90Google Scholar
  35. Heliövaara K, Väisänen R (1988) Interactions among herbivores in three polluted pine stands. Silva Fennica 22:283–292Google Scholar
  36. Heliövaara K, Väisänen R (1989) Quantitative variation in the elemental composition of Scots pine needles along a pollutant gradient. Silva Fennica, Helsinki 23:1–11Google Scholar
  37. Heliövaara K, Väisänen R (1990) Changes in population dynamics of pine insects induced by air pollution. In: Watt et al (eds) Population dynamics of forest insects. Intercept, Andover, Hampshire, pp 209–218Google Scholar
  38. Heliövaara K, Väisänen R, Kemppi F (1989) Change of pupal size of Panolis flammea (Lepidoptera, Noctuidae) and Bupalus piniarius (Geometridae) in response to concentration of industrial pollutants in their food plant. Oecologia Berlin 79:179–183Google Scholar
  39. Höfker L (1924) Zusammenhänge zwischen kritischen Schadstoffgehalten im Boden, in Futter-und Nahrungspflanzen. Landwtsch Forsch, Sonderheft 39:130–153Google Scholar
  40. Hortak M, Tesche M (1993) Einfluß von SO2 auf die Infektion von Fichtensämlingen durch Armillariua ostyae. Forstw Centralbl 112:93–97Google Scholar
  41. Howell RK, Graham JH (1977) Interaction of ozone and bacterialleafspot of alfaalfa. Plant Dis Rep 61:565–567Google Scholar
  42. Huttunen S (1984) Interactions of disease and other stress factors with atmospheric pollution. In: Treshow M (ed) Air pollution and plant life. Wiley, Chicester, pp 321–356Google Scholar
  43. James RL, Cobb FW, Miller PR, Parameter JR (1980a) Effects of air pollution on susceptibility of pine roots to Fomes annosus. Phytophathology 70:560–563Google Scholar
  44. James RL, Cobb FW Jr, Wilcox WW, Rowney DL (1980b) Effects of photochemical oxidant injury of ponderosa and jeffrey pines on susceptibility of sapwood and freshly cut stumps to Fomes annosus. Phytopathology 74:704–708Google Scholar
  45. Jancarik V (1961) Auftreten von holzangreifenden Pilzen im Rauchschadensgebiet des Erzgebirges. Lesnictvi 7:677–692Google Scholar
  46. Jung JL, Maurel S, Fritig B, Hahne G (1995) Different pathogenesis-related proteins are expressed in sunflower (Helianthus annus L) in response to physical, ehemical and stress factors. J Plant Physiol 145:153–160Google Scholar
  47. Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence systems induced by ozone. Plant Cell Environ 17:783–794Google Scholar
  48. Kärenlampi SO, Airaksinen K, Miettinen ATE, Kokko HI, Holopainen JK, Kärenlampi LV, Karjalainen RO (1994) Pathogenesis-related proteins in ozone-exposed Norway spruce (Picea abies (Karst) L). New Phytol 126:81–89Google Scholar
  49. Kätzel R, Möller K (1991) Einfluß von Luftschadstoffen auf die Populationsdynamik von Forstschädlingen. Beitr. Forstwirtschaft 25:139–143Google Scholar
  50. Kätzel R, Möller K (1993) Veränderungen in der Zusammensetzung der Hämolymphe von Bulparus piniaris L (Lep. Geometridae) nach dem Verzehr von schwe-feldioxidbelasteten Kiefernnadeln. Zool Jb Physiol 97:123–133Google Scholar
  51. Khan MW, Kulshrestha M (1991) Impact of sulfur dioxide on conidial germination of powdery mildew fungi. Environ Pollut 70:81–88Google Scholar
  52. Krause CR, Weidensaul TC (1978a) Effects of ozone on the sporulation, germination and pathogenicity of Botrytis cinerea. Phytopathology 68:195–198Google Scholar
  53. Krause CR, Weidensaul TC (1978b) Ultrastructural effects of ozone on the hostparasite relationship of Botrytis einera and Pelargonium hortorum. Phytophathology 68:301–307Google Scholar
  54. Larcher W (1987) Streß bei Pflanzen. Narurwissenschaften 74:158–167Google Scholar
  55. Laurence JA (1981) Effects of air pollutants on plant-pathogen interactions. Z Pflanzenkrh 87:156–172Google Scholar
  56. Laurence JA, Aluisio AL (1981) Effects of sulfur dioxide on expansion of lesions caused by Corynebacterium nebraskense in maize and Xanthomonas phaseoli var. sojensis in soybean. Phytopathol 71:445–448Google Scholar
  57. Laurence JA, Wood FA(1978a) Effects of ozone on infection of soybean by Pseudomonasglyeinea. Phytophathology 68:441–445Google Scholar
  58. Laurence JA, Wood FA (1978b) Effects of ozone on infection of wild strawberry by Xanthomona fragariae. Phytopathology 68:689–692Google Scholar
  59. Letchworth MB, Blum U (1977) Effects of acute ozone exposure on growth, nodulation and nitrogen content of ladino clover. Environ Pollut 14:303–312Google Scholar
  60. Lichtenthaler HK (1996) Vegetation stress: An introduction to the stress concept in plants. J Plant Physiol 148:4–14Google Scholar
  61. Magdycz WP, Manning WJ (1973) Botrytis cinera protects broad beens against visible ozone injury. Phytopathology 63:204Google Scholar
  62. Malhotra SS, Khan AA (1984) Biochemical and physiological impact of major pollutants. In: Treshow M (ed) Air pollution and plant life. Wiley, Chichester, pp 113–157Google Scholar
  63. Manion PD (1981) Tree disease concepts. Rentice-Hall, LondonGoogle Scholar
  64. Manning WJ (1975) Interactions between air pollutants and fungal, bacterial, and viral plant pathogens. Environ Pollut 9:87–90Google Scholar
  65. Manning WJ, Feder WA, Perkins I, Glickman M (1969) Ozone injury and infection of potato leaves by Botrytis cinera. Plant Dis Rep 53:691–693Google Scholar
  66. Manning WJ, von Tiedemann A (1995) Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3) and ultraviolet-B (UVB) radiation on plant diseases. Environ Pollut 88:219–245Google Scholar
  67. McNeill S, Aminu-Kano M, Houlden G, Bullock JM, Citrone S, Bell JNB (1987) The interaction between air pollution and sucking insects. In: Perry R et al (eds) Acid ra in — scientific and technical advances. Selper, London, pp 602–607Google Scholar
  68. Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol 105:467–472Google Scholar
  69. Meier S, Grand CF, Schönberger MM, Reinert RA, Bruck RI (1990) Growth, ectomycorrhiza and nonstructural carbohydrates of loblolly pine seedlings exposed to ozone and soil water deficit. Environ Pollut 64:11–27Google Scholar
  70. Minter DM (1981) Lophodermium on pines. Mycol Pap 147:1–54Google Scholar
  71. Minter DM, MilIar CS (1980) Ecology and biology of three Lophodermium species on secondary needles of Pinus sylvestris. Eur J For Pathol 10:169–181Google Scholar
  72. Mitterböck F, Führer E (1988) Wirkungen fluorbelasteter Fichtennadeln auf Nonnenraupen, Lymanntria monacha L.(Lep., Lymantriidae). J Appl Entomol 105:19–27Google Scholar
  73. Ohashi Y, Ohshima M (1992) Stress induced expression of genes for pathogenesis-related proteins in plants. Plant Cell Physil 33:819–826Google Scholar
  74. Pell EJ, Lukezic FL, Levine RG, Weissenberger WC (1977) Response of soybean foliage to reciprocal challenges by ozone and a hypersensitive-response-in≤ducing Pseudomonas. Phytophathology 67:1342–1345Google Scholar
  75. Raddi P, Magnai L, Capretti P (1993) Ausbreitung von Heterobasidion annosum in Weißtannen und Fichten nach 4jähriger Behandlung mit Schadstoffen. Forstw Centralbl 112:97–100Google Scholar
  76. Reinert RA, Gooding GV (1978) Effect of ozone on tobacco streak virus alone and in combination on Nieotiana tabacum. Phytophol 68:15–17Google Scholar
  77. Reinert RA, Rufty RC, Eason G (1988) Interaction of tobacco etch or tobacco veib mottling virus and ozone on biomass changes in Burley tobacco. Environ Pollut 53:209–218Google Scholar
  78. Rist DL, Lorbeer JW (1984) Moderate dosage of ozone enhance infection of onion leaves by Botrytiseinem but not by B.squamosa. Phytopathology 74:761–767Google Scholar
  79. Roades DF (1983) Herbivore population dynamics and plant chemistry. In: Denno RS, McClure MS (eds) Variable plants and herbivores in natural managed systems. Academic Press, New York, pp 165–222Google Scholar
  80. Rusch H, Laurence JA (1993) Interactive effects of ozone and powdery mildew on pea seedlings. Phytopathology 83:1258–1263Google Scholar
  81. Sandermann H, Langebartels C, Heller W (1990) Ozonstreß bei Pflanze — frühe und „Memory“-Effekte von Ozon bei Nadelbäumen. UWSF Z Umweltchem Okotox 2:14–15Google Scholar
  82. Schraudner M, Ernst D, Langebartels Ch, Sandermann Jr H (1992) Biochemical responses to ozone. III. Activation of the defense-related proteins β-1, 3-glucanase and chitinase in tobacco leaves. Plant Physiol 99:1321–1328Google Scholar
  83. Schroeter E (1907) Die Rauchquellen im Königreich Sachsen ind ihr Einfluß auf die Forstwirtschaft. Tharandter Forstl Jahrb 57:211–430Google Scholar
  84. Schuette LR (1971) Response of the primary infection process of Erysiphe graminis f. sp. hordei to ozone. Thesis Salt Lake City UTGoogle Scholar
  85. Shriner DS (1978) Effects of simulated acidic rain on host-parasite interactions in plant diseases. Phytopathology 68:213–218Google Scholar
  86. Sierpinski Z (1967) Einfluß industrieller Luftverunreinigungen auf die Populationsdynamik einiger primärer Kiefernschädlinge. 14. IUFRO-Kongreß München Referate 5, Sektion 24:518–531Google Scholar
  87. Sierpinski Z (1972) Bedeutung der sekundären Kiefernschädlinge in Gebieten chronischer Einwirkung industrieller Luftverunreinigungen. Mitt d Forstl Bundesversuchsanstalt Wien 97:609–615Google Scholar
  88. Skelly JM, Yang YS, Chevone BI, Long SJ, Nellessen E, Winner WE (1983) Ozone concentrations and their influence on forest species in the Blue Ridge Mountains of Virginia. In: Davis DD et al (eds) Air pollution and the productivity of the forest. Izaak Walton League of AmericaGoogle Scholar
  89. Staskawicz BJ, Ansubel SM, Baker BJ, Ellis JG, Iones DG (1995) Molecular genetics of plant disease resistance. Science 268:661–667Google Scholar
  90. Strong DR, Lawton JH, Southwood R (1984) Insects on plants — community pattern and mechanisms. Blackwell Scientific Publications Oxford, LondonGoogle Scholar
  91. Temple PJ, Bisessar S (1979) Response of white bean to bacterial blight, ozone and antioxidant protection in the field. Phytopathology 69:101–103Google Scholar
  92. Templin E (1962) Zur Populationsdynamik einiger Kiefernschadinsekten in rauchgeschädigten Beständen. Wiss Z TU Dresden 11:631–638Google Scholar
  93. Tesche M (1986) Hallimasch in immissionsbelasteten Fichtenbeständen. Biol Rundsch 24:383–391Google Scholar
  94. Tesche M (1991) Streß und Decline bei Waldbäumen. Forstw Centralb 110:56–65Google Scholar
  95. Tonneijck AEG (1994) Effects of various ozone exposures on the susceptibility of bean leaves (Phaseolus vulgaris L.) to Botrytis cinem. Environ Pollut 85(1):59–65Google Scholar
  96. Treshow M (1975) Interactions of air pollutants and plant disease. In: Kozlowski TT (ed) Responses of plants to air pollution. Academic Press, London, S 307–334Google Scholar
  97. Turunen M, Huttunen S (1990) A review of the response of epicuticular wax of conifer needles to air pollution. J Environ Qual 19:35–45Google Scholar
  98. von Tiedemann A (1992a) Ozone effects on fungal leaf disease of wheat in relation to epidemiology. I. Necrotrophic pathogens. J Phytopathol 134:177–186Google Scholar
  99. von Tiedemann A (1992b) Ozone effects on fungalleaf disease of wheat in relation to epidemiology. II. Biotrophic pathogens. J Phytopathol 134:187–197Google Scholar
  100. von Tiedemann A, Fehrmann H (1986) Increased susceptibility of grapevine against Botrytis einerea after fumigation with sulphur dioxide and ozone. Weinwiss 3:177–181Google Scholar
  101. von Tiedeman A, Weigel HJ, Jäger HJ (1991) Effects of open-top chamber fumigations with ozone on three fungalleaf diseases of wheat and the mycoflora of the phyllosphere. Environ Pollut 72:205–224Google Scholar
  102. Umweltbundesamt (Hrsg) (1997) Auswertung der Waldschadesnforschungsergebnisse (1982-1992) zur Aufklärung komplexer Ursache-Wirkungsbeziehungen mit Hilfe systemanalytischer Methoden. Erich Schmidt Verlag, BerlinGoogle Scholar
  103. Warrington S, Whittaker JB (1990) Interactions between sitka spruce, the green spruce aphid, sulphur dioxide pollution and drought. Environ Pollut 65:363–370Google Scholar
  104. Weinstein HL, McCune DC, Maneini JF, Van Leuken P (1973) Effects of hydrogen fluoride fumigation of beanplants on the growth, development and reproduction of the Mexican Bean Beetle. Proc 3rd Int Clean Air Congr, VDI-Verlag, A 150–153Google Scholar
  105. Wentzel KF, Ohnesorge B (1961) Zum Auftreten von Schadinsekten bei Luftverunreinigungen. Forstarchiv, Hannover 32:177–186Google Scholar
  106. Willenbrink J, Schatten T (1993) CO2-Fixierung und Assimilatverteilung in Fichten unter Langzeitbegasung mit Ozon. Forstw Centralbl 112:50–56Google Scholar
  107. Winner WE, Gillespie C, Shen WE, Mooney HA (1988) Stomatal responses to SO2 and O3. In: Schulte-Hostede S et al (eds) Air pollution and plant metabolism. Elsevier Appl Sci, London, New York, pp 255–271Google Scholar

Literatur

  1. Acock B, Allen LH (1985) Crop responses to elevated carbon dioxide concentrations, In: Strain BR, Cure JD (eds) Direct effects of increasing carbon dioxide on vegetation. United States Department of Energy, Washington DC, pp 53–97Google Scholar
  2. Allen LH (1990) Plant responses to rising carbon dioxide and potential interactions with air pollutants, J Environ Qual 19:15–34Google Scholar
  3. Allen LH (1992) Free-air CO2 enrichment field experiments: an historical overview. In: Hendrey GR (ed) FACE: free-air CO2 enrichment for plant research in the field.CRC Press, Boca Raton, pp 121–134Google Scholar
  4. Allen LH, Drake BG, Rogers HH, Shinn JH (1992) Field techiques for exposure of plants and ecosystems to elevated CO2 and other trace gases. In: Hendrey GR (ed) FACE: free-air CO2 enrichment for plant research in the field. CRC Press, Boca Raton, pp 85–119Google Scholar
  5. Amthor JS (1995) Terrestrial higher-plant response to increasing atmospheric (CO2) in relation to the global carbon cyde. Glob Change Biol 1:243–274Google Scholar
  6. Arp WJ (1991) Effects of source-sink relations on photosynthetic acdimation to elevated CO2. Plant Cell Environ 14:869–875Google Scholar
  7. Arp WJ, Drake BG, Pockman WT, Curtis PS, Whigham DF (1993) Interactions between C3 and C4 salt marsh species during four years of exposure to elevated atmo spheric CO2. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer Academic, Dordrecht, pp 133–143Google Scholar
  8. Baker JT, Allen LH (1993) Contrasting crop species responses to CO2 and temperature: rice, soybean and citrus. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer Academic, Dordrecht, pp 239–260Google Scholar
  9. Balaguer L, Barnes JD, Panicucci A, Borland AM (1995) Production and utilization of assimilates in wheat (Triticum aestivum L.) leaves exposed to elevated O3 and/or CO2. New Phytol 129:557–568Google Scholar
  10. Ball AS (1997) Microbial decomposition at elevated CO2 levels: effect of litter quality, Glob Change Biol 3:379–386Google Scholar
  11. Ball MC, Munns R (1992) Plant responses to salinity und er elevated atmospheric concentrations of CO2. Aust J Bot 40:515–525Google Scholar
  12. Barnes JD, Wellburn AR (1998) Air pollutant combinations. In: De Kok LJ, Stulen I (eds) Responses of plant metabolism to air pollution and global change. Backhuys, Leiden, pp 147–164Google Scholar
  13. Barton CVM, Lee HSJ, Jarvis PG (1993) A branch bag and CO2 control system for long-term CO2 enrichment of mature sitka spruce [Picea sitchensis (Bong.) Carr.]. Plant Cell Environ 16:1139–1148Google Scholar
  14. Batts GR, Morison JIL, Ellis RH, Hadley P, Wheeler TR (1997) Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. Eur J Agron 7:43–52Google Scholar
  15. Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21:167–196Google Scholar
  16. Bazzaz FA, Garbutt K, Reekie EG, Williams WE (1989) Using growth analysis to interpret competition between a C3 and a C4 annual under ambient and elevated CO2 environments. Oecologia 79:223–235Google Scholar
  17. Beerling DJ (1994) Modelling palaeophotosynthesis: late Cretaceous to present. Philos Trans R Soc Lond [B]346:421–432Google Scholar
  18. Beerling DJ, Chaloner WG (1993) Stomatal density responses of Egyptian Olea europaea L.leaves to CO2 change since 1327 BC. Ann Bot 71:431–435Google Scholar
  19. Beerling DJ, Chaloner WG (1994) Atmospheric CO2 changes since the last glacial maximum: evidence from the stomatal density record of fossilleaves. Rev Palaeobot Palynol 81:11–17Google Scholar
  20. Beerling DJ, Woodward FI (1993) Ecophysiological responses of plants to global environmental change since the last glacial maximum. New Phytol 125:641–648Google Scholar
  21. Bender J, Hertstein U, Black CR (1999) Growth and yield responses of spring wheat to increasing carbon dioxide, ozone and physiological stresses: a statistical analysis of, ESPACE-wheat’ results. Eur J Agron 10:185–195Google Scholar
  22. Berner RA (1993) Paleozoic atmospheric CO2: importance of solar radiation and plant evolution. Science 261:68–70Google Scholar
  23. Bertoni GP, Becker WM (1996) Expression of the cucumber hydroxypyruvate redu ctase gene is down-regulated by elevated CO2. Plant Physiol 112:599–605Google Scholar
  24. Blum H (1993) The response of CO2-related processes in grassland ecosystems in a three-year field CO2-enrichment study. In: Schulze ED, Mooney HA (eds) Design and execution of experiments on CO2 enrichment. Commission of the European Communities, Brussels, pp 367–370Google Scholar
  25. Bowes G (1993) Facing the inevitable: plants and increasing atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol 44:309–332Google Scholar
  26. Bunce JA (1993) Effects of doubled atmospheric carbon dioxide concentration on the responses of assimilation and conductance to humidity. Plant Cell Environ 16:189–197Google Scholar
  27. Campbell BD, Hart AL (1996) Competition between grass es and Trifolium repens with elevated atmospheric CO2. In: Körner C, Bazzaz FA (eds) Carbon dioxide, populations, and communities. Academic Press, San Diego, pp 301–317Google Scholar
  28. Carlson RW, Bazzaz FA (1982) Photosynthetic and growth responses to fumigation with SO2 at elevated CO2 for C3 and C4 plants. Oecologia 54:50–54Google Scholar
  29. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158Google Scholar
  30. Chaves MM, Pereira JS (1992) Water stress, CO2 and climate change. J Exp Bot 43:1131–1139Google Scholar
  31. Chiariello NR, Field CB (1996) Annual grassland responses to elevated CO2 in multiyear community microcosms. In: Körner C, Bazzaz FA (eds) Carbon dioxide, populations, and communities. Academic Press, San Diego, pp 139–157Google Scholar
  32. Cole DR, Monger HC (1994) Influence of atmospheric CO2 on the decline of C4 plants during the last deglaciation. Nature 368:533–536Google Scholar
  33. Coleman JS, Bazzaz FA (1992) Effects of CO2 and temperature on growth and resource use of co-occurring C3 and C4 annuals. Ecology 73:1244–1259Google Scholar
  34. Conroy JP (1992) Influence of elevated atmospheric CO2 concentrations on plant nutrition. Aust J Bot 40:445–456Google Scholar
  35. Conroy JP, Seneweera S, Basra AS, Rogers G, Nissenwooller B (1994) Influence of rising atmospheric CO2 concentrations and temperature on growth, yield and grain quality of cereal crops. Aust J Plant Physiol 21:741–758Google Scholar
  36. Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob Change Biol 4:43–54Google Scholar
  37. Couteaûx MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trend Ecol Evolut 10:63–66Google Scholar
  38. Coviella CE, Trumble JT (1999) Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Conserv Biol 13:700–712Google Scholar
  39. Crane PR, Friis EM, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature 374:27–33Google Scholar
  40. Cui M, Miller PM, Nobel PS (1993) CO2 exchange and growth of the crassulacean acid metabolism plant Opuntia ficus-indica under elevated CO2 in open-top chambers. Plant Physiol 103:519–524Google Scholar
  41. Cui M, Nobel PS (1994) Gas exchange and growth responses to elevated CO2 and light levels in the CAM species Opuntia ficus-indica. Plant Cell Environ 17:935–944Google Scholar
  42. Curtis PS (1996) A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ 19:127–137Google Scholar
  43. Curtis PS, Wang XZ (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313Google Scholar
  44. Dacey JWH, Drake BG, Klug MJ (1994) Stimulation of methane emission by carbon dioxide enrichment of marsh vegetation. Nature 370:47–49Google Scholar
  45. Dahlman RC (1993) CO2 and plants: revisited. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer Academic, Dordrecht, pp 339–355Google Scholar
  46. Diaz S (1995) Elevated CO2 responsiveness, interactions at the community level and plant functional types. J Biogeogr 22:289–295Google Scholar
  47. Diaz S, Grime JP, Harris J, McPherson E (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617Google Scholar
  48. Diemer M, Körner C (1998) Transient enhancement of carbon uptake in an alpine grassland ecosystem under elevated CO2 Arctic Alp Res 30:381–387Google Scholar
  49. Drake BG (1992) A field study of the effects of elevated CO2 on ecosystem processes in a Chesapeake Bay wetland. Aust J Bot 40:579–595Google Scholar
  50. Drake BG, Peresta G, Beugeling E, Matamala R (1996) Long-term elevated CO2 exposure in a Chesapeake Bay wetland: ecosystem gas exchange, primary production and tissue nitrogen. In: Koch GW, Mooney HA (eds) Carbon dioxide and terrestrial ecosystems. Academic Press, San Diego, pp 197–214Google Scholar
  51. Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2 ? Annu Rev Plant Physiol 48:609–639Google Scholar
  52. Dufrene E, Pontailler JY, Saugier B (1993) A branch bag technique for simultaneous CO2 enrichment and assimilation measurements on beech (Fagus sylvatica L.). Plant Cell Environ 16:1131–1138Google Scholar
  53. Ehleringer JR, Cerling TE (1995) Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants. Tree Physiol 15:105–111Google Scholar
  54. Ehleringer JR, Sage RF, Flanagan LB, Pearcy RW (1991) Climate change and the evolution of C4 photosynthesis. Trend Ecol Evolut 6:95–99Google Scholar
  55. Ellsworth DS, Oren R, Huang C, Phillips N, Hendrey GR (1995) Leaf and canopy responses to elevated CO2 in a Pine forest under free-air CO2 enrichment. Oecologia 104:139–146Google Scholar
  56. Erhardt A, Rusterholz HP (1997) Effects of elevated CO2 on flowering phenology and nectar production. Acta Oecol Oecol Plant 18:249–253Google Scholar
  57. Fangmeier A (1998) Nährstoffdynamik in Weizenbeständen unter veränderter CO2-Versorgung. Landschaftsentwickl Umweltforsch 107:129–146Google Scholar
  58. Fangmeier A, Petry R, Wulff K, Jäger H-J (1995) Reaktion von Wildpflanzen auf CO2-Erhöhung: Fallstudien an Vertretern der Hackunkrautfluren mit unterschiedlichen CO2-Fixierungsmechanismen. Verh Ges Oekol 24:275–282Google Scholar
  59. Fangmeier A, Grüters U, Vermehren B, Jäger H-J (1996) Responses of some cereals to CO2 enrichment and tropospheric ozone at different levels of nitrogen supply. J Appl Bot Angew Bot 70:12–18Google Scholar
  60. Fangmeier A, Grüters U, Högy P, Vermehren B, Jäger H-J (1997) Effects of elevated CO2, nitrogen supply and tropospheric ozone on spring wheat II. Nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn). Environ Pollut 96:43–59Google Scholar
  61. Fangmeier A, Jäger H-J (1998) CO2 enrichment, ozone, nitrogen fertilizer and wheat: physiological background of growth and yield responses. In: De Kok LJ, Stulen I (eds) Responses of plant metabolism to air pollution and global change. Backhuys, Leiden, pp 299–304Google Scholar
  62. Fangmeier A, DeTemmerman L, Mortensen L, Kemp K, Burke J, Mitchell R, van Oijen M, Weigel HJ (1999) Effects on nutrients and on grain quality in spring wheat crops grown under elevated CO2 concentrations and stress conditions in the European, multiple-site experiment, ESPACE-wheat’. Eur J Agron 10:215–229Google Scholar
  63. Field CB, Chapin FS, Matson PA, Mooney HA (1992) Responses of terrestrial ecosysterns to the changing atmosphere: a resource-based approach. Annu Rev Ecol Syst 23:201–235Google Scholar
  64. Field CB, Chapin FS, Chiariello NR, Holland EA, Mooney HA (1996) The Jasper Ridge CO2 experiment: Design and motivation. In: Koch GW, Mooney HA (eds) Carbon dioxide and terrestrial ecosystems. Academic Press, San Diego, pp 121–145Google Scholar
  65. Graham EA, Nobel PS (1996) Long-term effects of a doubled atmospheric CO2 concent ration on the CAM species Agave deserti. J Exp Bot 47:61–69Google Scholar
  66. Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology — a functional approach to common British species. Unwin Hyrnan, LondonGoogle Scholar
  67. Grüters U, Fangmeier A, Jäger H-J (2000) Scaling the reponse of wheat to elevated CO2: comparison of photosynthetic acclimation and organ/plant growth. J Appl Bot — Angew Bot 74 (in press)Google Scholar
  68. Handel MD, Risbey JS (1992) An annotated bibliography on the greenhouse effect and climate change. Clim Change 21:97–253Google Scholar
  69. Harley PC, Sharkey TD (1991) An improved model of C3 photosynthesis at high CO2 — reversed O2 sensitivity explained by a lack of glycerate reentry into the chloroplast. Photosynth Res 27:169–178Google Scholar
  70. Heagle AS, Miller JE, Sherrill DE, Rawlings JO (1993) Effects of ozone and carbon dioxide mixtures on two clones ofwhite clover. New Phytol 123:751–762Google Scholar
  71. Hebeisen T, Lüscher A, Zanetti S, Fischer BU, Hartwig UA, Frehner M, Hendrey GR, Blum H, Nösberger J (1997) Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO2 enrichment and management. Glob Change Biol 3:149–160Google Scholar
  72. Heck WW, Philbeck RB, Dunning JA (1978) A continuous stirred tank reactor (CSTR) system for exposing plants to gaseous air contaminants: principles, specifications, construction, and operation. US Dept of Agriculture, ARS-S-181, New OrleansGoogle Scholar
  73. Henderson S, Hattersly P, von Caemmerer S, Osmond CB (1995) Are C4 pathway plants threatened by global climatic change? In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer-Verlag, Berlin Heidelberg New York, pp 529–549Google Scholar
  74. Hendrey GR, Kimball B (1990) FACE. Free-air carbon dioxide enrichment. Application to field-grown cotton. DOE FACE project brochure, National Technical Information Service, US Department of Commerce, SpringfieldGoogle Scholar
  75. Hendrey GR, Ellsworth DS, Lewin KG, Nagy J (1999) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Glob Change Biol 5:293–309Google Scholar
  76. Hertstein U, Fangmeier A, Jäger H-J (1996) ESPACE-wheat (European Stress Physiology and Climate Experiment — project 1: wheat): objectives, general approach and first results. J Appl Bot — Angew Bot 70:172–180Google Scholar
  77. Hirsehel G, Körner C, Arnone JA (1997) Will rising atmospheric CO2 affect leaflitter quality and in situ decomposition rates in native plant communities? Oecologia 110:387–392Google Scholar
  78. Hofstaetter B, Grüters U, Fangmeier A, Jäger H-J (1996) Der Halm als Kohlenstoffsenke prägt die Reakt ion von Weizen auf erhöhte CO2-Konzentration. Verh Ges Oekol 26:613–617Google Scholar
  79. Huluka G, Hileman DR, Biswas PK, Lewin KF, Nagy J, Hendrey GR (1994) Effects of elevated CO2 and water stress on mineral concentration of cotton. Agr For Meteorol 70:141–152Google Scholar
  80. Hungate BA, Holland EA, Jackson RB, Chapin FS, Mooney HA, Field CB (1997a) The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388:576–579Google Scholar
  81. Hungate BA, Chapin FS, Zhong H, Holland EA, Field CB (1997b) Stimulation of grassland nitrogen cycling under carbon dioxide enrichment. Oecologia 109:149–153Google Scholar
  82. Hunt R, Hand DW, Hannah MA, Neal AM (1991) Response to CO2 enrichment in 27 herbaceous species. Funct Ecol 5:410–421Google Scholar
  83. Hunt R, Hand DW, Hannah MA, Neal AM (1993) Further responses to CO2 enrichment in British herbaceous species. Funct Ecol 7:661–668Google Scholar
  84. Hutehin PR, Press MC, Lee JA, Ashenden TW (1995) Elevated concentrations of CO2 may double methane emissions from mires. Glob Change Biol 1:125–128Google Scholar
  85. Johnson HB, Polley HW, Mayeux HS (1993) Increasing CO2 and plant-plant interactions: effects on natural vegetation. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer Academic, Dordrecht, pp 157–170Google Scholar
  86. Kattge J, Grüters U, Hoffstadt J, Fangmeier A, Jäger H-J (1997) Reaktion des Wasserhaushaltes von Wildkräutern auf erhöhte CO2-Konzentrationen der Atmosphäre. Verh Ges Oekol 27:273–282Google Scholar
  87. Kimball BA (1983) Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron J 75:779–788Google Scholar
  88. Kimball BA (1986) CO2 stimulation of growth and yield under environmental restraints. In: Enoch HZ, Kimball BA (eds) Carbon dioxide enrichment of greenhouse crops, vol II. Physiology, yield, and economics. CRC Press, Boca Raton, pp 53–67Google Scholar
  89. Kimball BA, Mauney JR, Nakayama FS, Idso SB (1993) Effects of increasing atmospheric CO2 on vegetation. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer Acadernic, Dordrecht, pp 65–75Google Scholar
  90. Kimball BA, Pinter PJ, Garcia RL, Lamorte RL, Wall GW, Hunsaker DJ, Wechsung G, Wechsung F, Kartschall T (1995) Productivity and water use of wheat under free-air CO2 enrichment. Glob Change Biol 1:429–442Google Scholar
  91. Koch GW, Mooney HA (1996) Response of terrestrial ecosystems to elevated CO2: a synthesis and summary. In: Koch GW, Mooney HA (eds) Carbon dioxide and terrestrial ecosystems. Academic Press, San Diego, pp 415–429Google Scholar
  92. Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560Google Scholar
  93. Körner C (1995a) Towards a better experimental basis for upscaling plant responses to elevated CO2 and elimate warming. Plant Cell Environ 18:1101–1110Google Scholar
  94. Körner C (1995b) Biodiversity and CO2: global change is under way. GAlA 4:234–243Google Scholar
  95. Körner C, Miglietta F (1994) Long term effects of naturally elevated CO2 on mediterranean grassland and forest trees. Oecologia 99:343–351Google Scholar
  96. Körner C, Diemer M, Schäppi B, Zimmermann L (1996) Response of Alpine vegetation to elevated CO2. In: Koch GW, Mooney HA (eds) Carbon dioxide and terrestrial ecosystems. Academic Press, San Diego, pp 177–196Google Scholar
  97. Körner C, Diemer M, Schäppi B, Niklaus P, Arnone JA (1997) The responses of alpine grassland to four seasons of CO2 enrichment: a synthesis. Acta Oecol Oecol Plant 18:165–175Google Scholar
  98. Krupa SV, Kickert RN (1989) The greenhouse effect: impact of ultraviolet-B (UV-B) radiation, carbon dioxide (CO2), and ozone (O3) on vegetation. Environ Pollut 61:263–393Google Scholar
  99. Krupa SV, Manning WJ (1988) Atmospheric ozone: formation and effects on vegetation. Environ Pollut 50:101–137Google Scholar
  100. Lambers H (1993) Rising CO2, secondary plant metabolism, plant-herbivore interactions and litter decomposition. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer Academic, Dordrecht, pp 263–271Google Scholar
  101. Lawton JH (1996) The Ecotron facility at Silwood Park: the value of “big bottle” experiments. Ecology 77:665–669Google Scholar
  102. Leadley PW, Niklaus P, Stocker R, Körner C (1997) Screen-aided CO2 control (SACC): amiddie ground between FACE and open-top chambers. Acta Oecol Oecol Plant 18:207–219Google Scholar
  103. Leadley PW, Niklaus PA, Stocker R, Körner C (1999) A field study of the effects of elevated CO2 on plant biomass and community structure in a calcareous grassland. Oecologia 118:39–49Google Scholar
  104. Leegood RC (1996) Primary photosynthate production: physiology and metabolism. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops. Dekker, New York, pp 21–41Google Scholar
  105. Lincoln DE, Fajer ED, Johnson RH (1993) Plant insect herbivore interactions in elevated CO2 environments. Trend Ecol Evolut 8:64–68Google Scholar
  106. Lindroth RL (1996) Consequences of elevated atmospheric CO2 for forest insects. In: Körner C, Bazzaz FA (eds) Carbon dioxide, populations, and communities. Academic Press, San Diego, pp 347–361Google Scholar
  107. Lloyd J, Farquhar GD (1996) The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. I. General principles and forest ecosystems. Funct Ecol 10:4–32Google Scholar
  108. Long SP, Baker NR, Raines CA (1993) Analysing the responses of photosynthetic CO2 assimilation to long-term elevation of atmospheric CO2 concentration. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer Academic, Dordrecht, pp 33–45Google Scholar
  109. Lüscher A, Hebeisen T, Zanetti S, Hartwig UA, Blum H, Hendrey GR, Nösberger J (1996) Differences between legumes and nonlegumes of permanent grassland in their responses to free-air carbon dioxide enrichment: its effect on competition in a multispecies mixture. In: Körner C, Bazzaz FA (eds) Carbon dioxide, populations, and communities. Academic Press, San Diego, pp 287–300Google Scholar
  110. Malone SR, Mayeux HS, Johnson HB, Polley HW (1993) Stomatal density and aperture length in four plant species grown across a subambient CO2 gradient. Am J Bot 80:1413–1418Google Scholar
  111. Manderscheid R, Bender J, Jäger H-J, Weigel HJ (1995) Effects of season long CO2 enrichment on cereals. H. Nutrient concentrations and grain quality. Agr Ecosyst Environ 54:175–185Google Scholar
  112. McConnaughay KDM, Berntson GM, Bazzaz FA (1993) Limitations to CO2-induced growth enhancement in pot studies. Oecologia 94:550–557Google Scholar
  113. Miglietta F, Raschi A, Bettarini I, Resti R, Selvi F (1993) Natural CO2 springs in Italy: a resource for examining long-term response of vegetation to rising atmospheric CO2 concentrations. Plant Cell Environ 16:873–878Google Scholar
  114. Miglietta F, Lanini M, Bindi M, Magliulo V (1997) Free air CO2 enrichment of potato (Solanum tuberosum L.): design and performance of the CO2-fumigation system. Glob Change Biol 3:417–427Google Scholar
  115. Morgan ME, Kingston JD, Marino BD (1994) Carbon isotopic evidence for the emergence of C4 plants in the neogene from Pakistan and Kenya. Nature 367:162–165Google Scholar
  116. Morison JIL (1993) Response of plants to CO2 under water limited conditions. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer Academic, Dordrecht, pp 193–209Google Scholar
  117. Mott KA (1988) Do stomata respond to CO2 concentrations other than intercellular? Plant Physiol 86:200–203Google Scholar
  118. Mousseau M, Saugier B (1992) The direct effect of increased CO2 on gas exchange and growth of forest tree species. J Exp Bot 43:1121–1130Google Scholar
  119. Murray MB, Smith RI, Leith ID, Fowler D, Lee HSJ, Friend AD, Jarvis PG (1994) Effects of elevated CO2’ nutrition and climatic warming on bud phenology in Sitka spruce (Picea sitchensis)and their impact on the risk of frost damage. Tree Physiol 14:691–706Google Scholar
  120. O’Neill EG, Norby RJ (1996) Litter quality and decomposition rates of foliar litter produced unter CO2 enrichment. In: Koch GW, Mooney HA (eds) Carbon dio xide and terrestrial ecosystems. Academic Press, San Diego, pp 87–103Google Scholar
  121. Oechel WC, Riechers G, Lawrence WT, Prudhomme TJ, Grulke N, Hastings SJ (1992) „CO2 LT“ an automated, null-balance system for studying the effects of elevated CO2 and global climate change on unmanaged ecosystems. Funct Ecol 6:86–100Google Scholar
  122. Oechel WC, Vourlitis GL (1994) The effects of climate change on land atmosphere feedbacks in arctic tundra regions. Trend Ecol Evolut 9:324–329Google Scholar
  123. Oechel WC, Vourlitis GL (1996) Direct effects of elevated CO2 on Arctic plant and ecosystem function. In: Koch GW, Mooney HA (eds) Carbon dioxide and terrestrial ecosystems.Academic Press, San Diego, pp 163–176Google Scholar
  124. Osmond CB, Grace SC (1995) Perspectives on photoinhibition and photorespiration in the fleld: quintessential inefflciencies of the light and dark reactions of photosynthesis. J Exp Bot 46:1351–1362Google Scholar
  125. Overdieck D (1993) Elevated CO2 and the mineral content of herbaceous and woody plants. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer Academic, Dordrecht, pp 403–411Google Scholar
  126. Owensby CE, Coyne PI, Harn JM, Auen LM, Knapp AK (1993) Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO2. Ecol Appl 3:644–653Google Scholar
  127. Owensby CE, Auen LM, Coyne PI (1994) Biomass production in a nitrogen-fertilized, tallgrass prairie ecosystem exposed to ambient and elevated levels of CO2. Plant Soil 165:105–113Google Scholar
  128. Owensby CE, Cochran RC, Auen LM (1996) Effects of elevated carbon dioxide on forage quality for ruminants. In: Körner C, Bazzaz FA (eds) Carbon dioxide, populations, and communities. Academic Press, San Diego, pp 363–371Google Scholar
  129. Owensby CE, Harn JM, Knapp AK, Auen LM (1999) Biomass production and speeies composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Glob Change Biol 5:497–506Google Scholar
  130. Patterson DT, Flint EP (1990) Implications of increasing carbon dioxide and climate change for plant communities and competition in natural and managed ecosystems. In: Kimball BA (ed) Impact of carbon dioxide, trace gases, and climate change on global agriculture. American Soeiety of Agronomy (ASA), Madison, pp 83–110Google Scholar
  131. Payer HD, Pfirrmann T, Mathy P (1990) Air pollution research report 26: environmental Research with Plants in Closed Chambers. Proceedings of an international symposium jointly organised by the Commission of the European Communities and the Gesellschaft für Strahlen-und Umweltforschung München-Neuherberg, FRG, 9–11 Oct 1989. Commission of the European Communities, BrusselsGoogle Scholar
  132. Penuelas J, Azconbieto J (1992) Changes in leaf delta 13C ofherbarium plant species during the last 3 centuries of CO2 increase. Plant Cell Environ 15:485–489Google Scholar
  133. Perez-Soba M (1995) Physiological modulation of the vitality of Scots pine trees by atmospheric ammonia deposition. PhD thesis, Department of Biology, Univ Groningen, GroningenGoogle Scholar
  134. Petit JR, Iouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature 399:429–436Google Scholar
  135. Picon C, Guehl JM, Aussenac G (1996) Growth dynamics, transpiration and wateruse effieiency in Quercus robur plants submitted to elevated CO2 and drought. Ann Sci For 53:431–446Google Scholar
  136. Polley HW, Johnson HB, Marino BD, Mayeux HS (1993) Increase in C3 plant wateruse effieiency and biomass over glaeial to present CO2 concentrations. Nature 361:61–64Google Scholar
  137. Pollock CJ, Cairns AJ, Sims IM, Housley TL (1996) Fructans as reserve carbohydrates in crop plants. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops. Dekker, New York, pp 97–113Google Scholar
  138. Poorter H (1993) Interspeeific variation in the growth response of plants to an elevated ambient CO2 concentration. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer Academic, Dordrecht, pp 77–97Google Scholar
  139. Poorter H, Roumet C, Campbell BD (1996) Interspeeific variation in the growth response of plants to elevated CO2: a search for functional types. In: Körner C, Bazzaz FA (eds) Carbon dioxide, populations, and communities. Academic Press, San Diego, pp 375–412Google Scholar
  140. Rafarel CR, Ashenden TW, Roberts TM (1995) An improved Solardome system for exposing plants to elevated CO2 and temperature. New Phytol 131:481–490Google Scholar
  141. Raman R, Oliver DJ (1997) Light-dependent control of photorespiratory gene expression. In: Pessarakli M (ed) Handbook of Photosynthesis. Dekker, New York, pp 381–389Google Scholar
  142. Rao MV, De Kok LJ (1994) Interactive effects of high CO2 and SO2 on growth and antioxidant levels in wheat. Phyton 34:279–290Google Scholar
  143. Rastetter EB, Shaver GR (1992) A model of multiple-element limitation for acclimating vegetation. Ecology 73:1157–1174Google Scholar
  144. Rawson HM (1995) Yield responses of two wheat genotypes to carbon dioxide and temperature in field studies using temperature gradient tunnels. Aust J Plant Physiol 22:23–32Google Scholar
  145. Reekie EG (1996) The effect of elevated CO2 on developmental processes and its implications for plant-plant interactions. In: Körner C, Bazzaz FA (eds) Carbon dioxide, populations, and communities. Academic Press, San Diego, pp 333–346Google Scholar
  146. Reynolds HL (1996) Effects of elevated CO2 on plants grown in competition. In: Körner C, Bazzaz FA (eds) Carbon dioxide, populations, and communities. Academic Press, San Diego, pp 273–286Google Scholar
  147. Rillig MC, Field, CB, Allen MF (1999) Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia 119:572–577Google Scholar
  148. Rogers GS, Payne L, Milham P, Conroy J (1993) Nitrogen and phosphorus requirements of cotton and wheat under changing atmospheric CO2 concentrations. Plant Soil 155/156:231–234Google Scholar
  149. Rogers HH, Dahlman RC (1993) Crop responses to CO2 enrichment. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer Academic, Dordrecht, pp 117–131Google Scholar
  150. Rogers HH, Jeffries HE, Stahel EP, Heck WW, Ripperton LA, Whitherspoon AM (1977) Measuring air pollutant uptake by plants: a direct kinetic approach. JAPCA 27:1192–1197Google Scholar
  151. Rogers HH, Bingham GE, Cure JD, Heck WW, Heagle AS, Israel DW, Smith JM, Surano KA, Thomas JF (1980) Field studies of plant responses to elevated carbon dioxide levels. US Department of Energy, Washington DCGoogle Scholar
  152. Rogers HH, Sionit N, Cure JD, Smith JM, Bingham GE (1984) Influence of elevated carbon dioxide on water relations of soybeans. Plant Physiol 74:233–238Google Scholar
  153. Rogers HH, Runion GB, Krupa SV (1994) Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ Pollut 83:155–189Google Scholar
  154. Rozema J (1993) Plant responses to atmospheric carbon dioxide enrichment: interactions with some soil and atmospheric conditions. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer Academic, Dordrecht, pp 173–190Google Scholar
  155. Rötzel C, Leadley PW, Körner C (1997) Non-destructive assessment of the effects of elevated CO2 on plant community structure in a calcareous grassland. Acta Oecol Oecol Plant 18:231–239Google Scholar
  156. Sage RF (1994) Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective. Photosynth Res 39:351–368Google Scholar
  157. Sage RF (1995) Was low atmospheric CO2 during the Pleistocene a limiting factor for the origin of agriculture? Glob Change Biol 1:93–106Google Scholar
  158. Sage RF, Sharkey TD, Seemann JR (1989) Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol 89:590–596Google Scholar
  159. Schäppi B, Körner C (1996) Growth responses of an alpine grassland to elevated CO2. Oecologia 105:43–52Google Scholar
  160. Schenk U, Jäger H-J, Weigel HJ (1997) The response of perennial ryegrass/white clover swards to elevated atmospheric CO2 concentrations. I. Effects on cornpetition and species composition and interaction with N supply. New Phytol 135:67–79Google Scholar
  161. Schimel D, Alves D, Enting I et al (1995) Radiative forcing of climate change. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995. The science of climate change. Cambridge Univ Press, Cambridge, pp 65–131Google Scholar
  162. Schnyder H (1993) The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling — a review.New Phytol 123:233–245Google Scholar
  163. Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot Rev 51:53–105Google Scholar
  164. Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiol Plant 73:147–152Google Scholar
  165. Sinclair TR (1992) Mineral nutrition and plant growth response to climate change. J Exp Bot 43:1141–1146Google Scholar
  166. Smart DR, Chatterton NJ, Bugbee B (1994) The influence of elevated CO2 on nonstructural carbohydrate distribution and fructan accumulation in wheat canopies. Plant Cell Environ 17:435–442Google Scholar
  167. Spring GM, Priestman GH, Grime JP (1996) A new field technique for elevating carbon dioxide levels in climate change experiments. Funct Ecol 10:541–545Google Scholar
  168. Stitt M, Schulze D (1994) Does Rubisco control the rate of photosynthesis and plant growth? An exereise in molecular ecophysiology. Plant Cell Environ 17:465–487Google Scholar
  169. Stitt M, Sonnewald U (1995) Regulation of metabolism in transgenic plants. Annu Rev Plant Physiol Plant Mol Biol 46:341–368Google Scholar
  170. Stocker R, Leadley PW, Körner C (1997) Carbon and water fluxes in a calcareous grassland under elevated CO2. Funct Ecol 11:222–230Google Scholar
  171. Strain BR, Bazzaz FA (1983) Terrestrial plant communities. In: Lemon ER (ed) CO2 and plants. The response of plants to rising levels of atmospheric carbon dioxide. Westview Press, Boulder, Colorado, pp 177–222Google Scholar
  172. Strain BR, Cure JD (1985) Direct effects of increasing carbon dioxide on vegetation. US Department of Energy, Washington DCGoogle Scholar
  173. Strain BR, Cure JD (1994) Direct effects of atmospheric CO2 enrichment on plants and ecosystems: an updated bibliographie database. Oak Ridge National Laboratory, Oak Ridge, TennesseeGoogle Scholar
  174. Stulen I, den Hertog J (1993) Root growth and functioning under atmospheric CO2 enrichment. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer Academic, Dordrecht, pp 99–115Google Scholar
  175. Teskey RO (1995) A field study of the effects of elevated CO2 on carbon assimilation, stomatal conductance and leaf and branch growth of Pinus taeda trees. Plant Cell Environ 18:565–573Google Scholar
  176. Tissue DT, Oechel WC (1987) Response of Eriophorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra. Ecology 68:401–410Google Scholar
  177. Torbert HA, Prior SA, Rogers HH, Schlesinger WH, Mullins GL, Runion GB (1996) Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality. J Environ Qual 25:720–726Google Scholar
  178. Tremmel DC, Patterson DT (1994) Effects of elevated CO2 and temperature on development in soybean and five weeds. Can J Plant Sci 74:43–50Google Scholar
  179. Tuba Z, Szente K, Koch J (1994) Response of photosynthesis, stomatal conductance, water use effieiency and production to long-term elevated CO2 in winter wheat. J Plant Physiol 144:661–668Google Scholar
  180. Tyree MT, Alexander JD (1993) Plant water relations and the effects of elevated CO2: a review and suggestions for future research. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer Academic, Dordrecht, pp 47–62Google Scholar
  181. von Caemmerer S, Farquhar GD (1981) Some relationsships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387Google Scholar
  182. Vu JCV, Allen LH, Boote KJ, Bowes G (1997) Effects of elevated CO2 and temperature on photosynthesis and Rubisco in rice and soybean. Plant Cell Environ 20:68–76Google Scholar
  183. Webber AN, Nie GY, Long SP (1994) Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth Res 39:413–425Google Scholar
  184. Weigel HJ, Manderscheid R, Jäger H-J, Mejer GJ (l994) Effects of season-long CO2 enrichment on cereals. I.Growth performance and yield. Agr Ecosyst Environ 48:231–240Google Scholar
  185. Wheeler TR, Batts GR, Ellis RH, Hadley P, Morison JIL (1996) Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2and temperature. J Agr Sci 127:37–48Google Scholar
  186. Wilsey BJ (1996) Plant responses to elevated atmospheric CO2 among terrestrial biomes. OIKOS 76:201–206Google Scholar
  187. Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from pre industriallevels. Nature 327:617–618Google Scholar
  188. Woodward FI, Thompson GB, McKee IF (1991) The effects of elevated concentrations of carbon dioxide on individual plants, populations, communities and ecosystems. Ann Bot 67 [Suppl 1]:23–38Google Scholar
  189. Wray SM, Strain BR (1987) Competition in old-field perennials under CO2-enrichment. Ecology 68:1116–1120Google Scholar
  190. Wu J, Neimanis S, Heber U (1991) Photorespiration is more effective than the Mehler reaction in protecting the photosynthetic apparatus against photoinhibition. Bot Acta 104:283–291Google Scholar
  191. Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117Google Scholar

Literatur

  1. Amthor JS (1986) Evolution and applicability of a whole plant respiration model. J Theor Biol 122:473–490Google Scholar
  2. Alseher R (1984) Effects of SO2 on light-modulated enzyme reactions. In: Koziol MJ, Whadey FR (eds) Gaseous air pollutants and plant metabolism. Butterworth, London, pp 181–200Google Scholar
  3. Anderson LE, Muschinek G, Marques I (1988) Effects of SO2and sulfite on stromal metabolism. In: Schulte-Hostede S, Darrall NM, Blank LW, Wellburn AR (eds) Air pollution and plant metabolism. Elesevier, London, pp 134–147Google Scholar
  4. Augustin S (1997) Forstbodenkunde. In: Umweltbundesamt (Hrsg) Auswertung der Waldschadensforschungsergebnisse (1982-1992) zur Aufklärung komplexer Ursache-Wirkungsbeziehungen mit Hilfe systemanalytischer Methoden. UBA, Berlin 6/97Google Scholar
  5. Behra P, Sigg L, Stumm W (1989) Dominating influence of NH3 and SO2 on the oxidation of aqueous SO2: the coupling of NH3 and SO2 in atmospheric water. Atmos Environ 23:2691–2708Google Scholar
  6. Berge E, Bartnicki J, Olendrzynski K, Tsyro SG (1999) Long-term trends in emissions and transboundary transport of acidifying air pollution in Europe. J Environ Manage 57:31–50Google Scholar
  7. Bressan RA, Wilson LG, Filner P (1978) Mechanisms of resistance to sulfur dioxide in the Cucurbitaceae. Plant Physiol 61:761–767Google Scholar
  8. Cape JN, Unsworth MH (1988) Deposition, uptake and residence of pollutants. In: Schulte-Hostede S, Darrall NM, Blank LW, Wellburn AR (eds) Air pollution and plant metabolism. Elesevier, London, pp 1–18Google Scholar
  9. Crittenden PD, Read DJ (1979) The effects of air pollution on plant growth with special reference to SO2. II. Growth studies with Lolium perenne. New Phytol 80:49–62Google Scholar
  10. Czarnowski M (l977) Seasonal changes of photosynthetic rate in deciduous tree growing within the region of industrial emissions. Bull Acad Polon Sci Ser Sci Biol XXV:443–450Google Scholar
  11. Davison W, George DG, Edwards NJA(1995) Controlled reversal of lake acidification by treatment with phosphate fertilizer. Nature 377:504–507Google Scholar
  12. Darrall NM (1989) The effect of air pollutants on physiological processes in plants. Plant Cell Environ 12:1–30Google Scholar
  13. Däßler HG (l991) Einfluß von Luftverunreinigungen auf die Vegetation: Ursachen — Wirkungen — Gegenmaßnahmen. Gustav Fischer, JenaGoogle Scholar
  14. Davis DD, Wilhour RG (1976) Susceptibility of woody plants to sulfur dioxide and photochemical oxidants. US Environmental Protection Agency, Corvallis Oregon, EPA-600/3-76-102Google Scholar
  15. Dignon J, Hameed S (l989) Global emissions of nitrogen and sulfur oxides from 1960 to 1980. JAPCA 39:180–186Google Scholar
  16. Eriksen J, Murphy MD, Schnug E (1998) The soil sulfur cycle. In: Schnug E (ed) Sulphur in agroecosystems. Kluwer Academic, Dordrecht, pp 39–73Google Scholar
  17. Erisman JW (1994) Evaluation of a surface resistance parametrization of sulphur dioxide. Atmos Environ 28:2583–2594Google Scholar
  18. Erisman JW, Draaijers GPJ (l995) Atmospheric deposition in relation to acidification and eutrophiciation. Elsevier, AmsterdamGoogle Scholar
  19. Fangmeier A (1989) Effects of open-top fumigations with SO2, NO2, and ozone on the native herb layer of a beech forest. Environ Exp Bot 29:199–213Google Scholar
  20. Fangmeier A, Hadwiger-Fangmeier A, von der Eerden L, Jäger HJ (1994) Effects of atmospheric ammonia on vegetation — a review. Environ Pollut 86:43–82Google Scholar
  21. Filner P, Rennenberg H, Sekiya J, Bressan RA, Wilson LG, Le Cureux L, Shimei T (1984) Biosynthesis and emission of hydrogen sulfide by higher plants. In: Koziol MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism. Butterworth, London, pp 291–312Google Scholar
  22. Fowler D (l985) Deposition of SO2 onto plant canopies. In: Winner WE, Mooney HA, Goldstein RA (eds) Sulfur dioxide and vegetation. Stanford University Press, Stanford, pp 389–402Google Scholar
  23. Freedman B (l989) Environmental ecology. The impacts of pollution and other stresses on ecosystem structure and function. Academic Press, San DiegoGoogle Scholar
  24. Fuhrer J, Skärby L, Ashmore MR (1997) Criticallevels for ozone effects on vegetation in Europe. Environ Pollut 97:91–106Google Scholar
  25. Galloway JN (l989) Atmospheric acidification: projections for the future. AMBIO 18:161–166Google Scholar
  26. Garsed SG (1985) SO2 uptake and transport. In: Winner WE, Mooney HA, Goldstein RA (eds) Sulfur dioxide and vegetation. Stanford University Press, Stanford, pp 75–95Google Scholar
  27. Grodzinska K (1980) Plant contamination caused by urban and industrial emissions in the region of Cracow city (southern Poland). In: Urban ecology — the second European ecological symposium, Berlin, 8-12 Sept 1980, Blackwell Scientific, Oxford, pp 149–159Google Scholar
  28. Grodzinska W, Yorks TP (1981) Species and ecosystem level bioindicators of airborne pollution and analysis of 2 major studies. Water Air Soil Pollut 16:33–53Google Scholar
  29. Guderian R (1977) Air pollution. Ecol Stud 22. Springer-Verlag, Berlin Heidelberg NewYorkGoogle Scholar
  30. Guderian R, Stratmann H (1962) Freilandversuche zur Ermittlung von Schwefeldi-oxidwirkungen auf die Vegetation. Teil I. Übersicht zur Versuchsmethodik und Versuchsauswertung. Forschungsbericht des Landes Nordrhein-Westfalen Nr 1118, Westdeutscher Verlag, KölnGoogle Scholar
  31. Guderian R, Stratmann H (1968) Freilandversuche zur Ermittlung von Schwefeldi-oxidwirkungen auf die Vegetation. Teil III. Grenzwerte schädlicher SO2-Immissionen für Obst-und Forstkulturen sowie für landwirtschaftliche und gärtnerische Pflanzenarten. Forschungsbericht des Landes Nordrhein-Westfalen Nr.1920, Westdeutscher Verlag, KölnGoogle Scholar
  32. Guderian R, Wienhaus O (1997) „Neuar tige Waldschäden“ und Luftverunreinigungen. In: Deutscher Forstverein e V (Hrsg) Deutscher Forstverein, Jahresbericht 1996, Niedenstein, S 181–200Google Scholar
  33. Hameed S, Dignon J (1992) Global emissions of nitrogen and sulfur oxides in fossil fuel combustion 1970–1986. J Air Waste Manage Assoc 42:159–163Google Scholar
  34. Henriksen A, Skjelkvale BL, Mannio J, Wilander A, Harriman R, Curtis C, Jensen JP, Fjeld E, Moiseenko T (1998) Northern European Lake Survey, 1995 — Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales. AMBIO 27:80–91Google Scholar
  35. Herschbach C, De Kok LJ, Rennenberg H (1995) Net uptake of sulfate and its transport to the shoot in spinach plants fumigated with H2S or SO2: does atmospheric sulfur affect the „inter-organ“ regulation of sulfur nutrition? Bot Acta 108:41–46Google Scholar
  36. Irwin JG, Williams ML (1988) Acid rain: chemistry and transport. Environ Pollut 50:29–59Google Scholar
  37. IUFRO (International Union of Forestry Research Organization) (1978) Resolution über maximale Immissionswerte zum Schutz der Wälder. IUFRO-Fachgruppe S 2.09.00Google Scholar
  38. Jacobson JS, Hill AC (1970) Recognition of air pollution injury to vegetation: a pictorial atlas. Air Pollution Control Association, PittsburghGoogle Scholar
  39. Jonas PR, Charlson RJ, Rodhe H (1994) Aerosols. In: Houghton JT, Meira Filho LG, Bruce J, Lee H, Callander BA, Haites E, Harris N, Maskell K (eds) Climate change 1994. Radative forcing and an evaluation of the IPCC IS92 emission scenarios. Cambridge University Press, Cambridge, pp 127–162Google Scholar
  40. Katz M (1949) Sulfur dioxide in the atmosphere and its relation to plant life. Ind Eng Chem 2450–2465Google Scholar
  41. Kerstiens G, Federholzner R, Lendzian KJ (1992) Dry deposition and cuticular uptake of pollutant gases. Agr Ecosyst Environ 42:239–253Google Scholar
  42. Kluge H (1993) Nur die Buchen überlebten. Forst Holz 48:462–466Google Scholar
  43. Kropff MJ, Smeets WLM, Meijer EMJ, Van der Zalm AJA, Bakx EJ (1990) Effects of sulphur dioxide on leaf photosynthesis — the role of temperature and humidity. Physiol Plant 80:655–661Google Scholar
  44. Laisk A, Pfanz H, Heber U (1988) Sulfur-dioxide fluxes into different cellular cornpartments of leaves photosynthesizing in apolluted atmosphere. 2. Consequences of SO2 uptake as revealed by computer analysis. Planta 173:241–252Google Scholar
  45. Last FT (1989) Experimental investigations of forest decline: the use of open top chambers. Vortrag auf dem 5. Statuskolloquium des PEF vom 5.-9. März im KFZ Karlsruhe. PEF-Berichte 1:141–173Google Scholar
  46. Leblanc F, Rao D (1975) Effects of air pollutants on lichens and bryophytes. In: Mudd JB, Kozlowski TT (eds) Responses of plants to air pollution. Academic Press, London, pp 237–272Google Scholar
  47. Liebold E, Drechsler M (1991) Schadenszustand und-entwicklung in den SO2-geschädigten Fichtengebieten Sachsens. AFZ 10:492–494Google Scholar
  48. Linzon SN (1971) Economic effects of sulfur dioxide on forest growth. JAPCA 21:81–86Google Scholar
  49. Linzon SN (1983) Long-term effects of sulphur dioxide on forest growth. Aquilo Ser Bot 19:157–166Google Scholar
  50. Linzon SN, Pearson RG, Temple PJ (1979) Sulfur concentrations in plant foliage and related effects. JAPCA 29:520–525Google Scholar
  51. Malhotra SS, Blauel RA (1980) Diagnosis of air pollutant and natural stress symptoms on forest vegetation in Western Canada. Canadian Forestry Service, EdmontonGoogle Scholar
  52. Materna J (1983) Beziehungen zwischen der SO2-Konzentration und der Reaktion der Fichtenbestände. Aquilo Ser Bot 19:147–156Google Scholar
  53. Materna J (1987) Waldschäden in der CSSR. Österr Forstztg 1:17–19Google Scholar
  54. McCormick MP, Thomason LW, Trepte CR (1995) Atmospheric effects of the Mt Pinatubo eruption. Nature 373:399–404Google Scholar
  55. Mohr H (1994) Stickstoffeintrag als Ursache neuartiger Waldschäden. Spektrum der Wissenschaft, 48–53Google Scholar
  56. Neighbour EA, Cottam DA, Mansfield TA (1988) Effects of sulphur dioxide and nitrogen dioxide on the control of water loss by birch (Betula spp.), New Phytol 108:149–158Google Scholar
  57. Peiser GD, Yang SF (1985) Biochemical and physiological effects of SO2 on nonpho-tosynthetic processes in plants. In: Winner WE, Mooney HA, Goldstein RA (eds) Sulfur dioxide and vegetation. Stanford University Press, Stanford, California, pp 148–161Google Scholar
  58. Pfanz H, Martinoia E, Lange OL, Heber U (1987a) Flux of SO2 into leaf cells and cellular acidification by SO2. Plant Physiol 85:928–933Google Scholar
  59. Pfanz H, Martinoia E, Lange OL, Heber U (1987b) Mesophyll resistances to SO2-fluxes into leaves. Plant Physiol 85:922–927Google Scholar
  60. Poborski PS (1988) Pollutant penetration through the cuticle. In: Schulte-Hostede S, Darrall NM, Blank LW, Wellburn AR (eds) Air pollution and plant metabolism. Elsevier Applied Science, London, pp 19–35Google Scholar
  61. Renberg I, Korsman T, Anderson NJ (1993) A temporal perspective of lake acidification in Sweden. AMBIO 22:264–271Google Scholar
  62. Rennenberg H (1984) The fate of excess sulphur in higher plants. Annu Rev Plant Physiol 35:121–153Google Scholar
  63. Rice PM, Tourangeau PC, Johns C, Gordon CC (1984) Baseline sulphur and fluoride concentrations in indigenous plants common in the Northern Great Plains. Environ Pollut Ser B 7:233–246Google Scholar
  64. Schnug E, Evans EJ (1992) Monitoring of the sulfur supply of agricultural crops in Northern Europe. Phyton 32:119–122Google Scholar
  65. Schulte-Hostede S, Darrall NM, Blank LW, Wellburn AR (eds) (1988) Air pollution and plant metabolism. Elsevier Applied Science, LondonGoogle Scholar
  66. Skjelkvale BL, Wright RF (1998) Mountain lakes; sensitivity to acid deposition and global climate change. AMBIO 27:280–286Google Scholar
  67. Smith IK, Polle A, Rennenberg H (1990) Glutathione. In: Alseher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, NewYork, pp 201–215Google Scholar
  68. Soares A, Ming JY, Pearson J (1995) Physiological indicators and susceptibility of plants to acidifying atmospheric pollution: a multivariate approach. Environ Pollut 87:159–166Google Scholar
  69. Stöckhardt A (1867) Untersuchungen über die schädliche Einwirkung des Hütten-und Steinkohlenrauches auf das Wachstum der Pflanzen, insbesondere Fichte und Tanne. Tharandter Forstl Jahrb 21:218–254Google Scholar
  70. Thomas MD, Hendricks RH, Collier TR, Hill GR (l943) The utilisation of sulphate and sulfur dioxide for the sulfur nutrition of alfalfa. Plant Physiol. 19:227–244Google Scholar
  71. Unsworth MH (l982) Exposure to gaseous pollutants and uptake by plants. In: Unsworth MH, Ormrod DP (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworth, London, pp 43–63Google Scholar
  72. UN-ECE (United Nations Economic Commission for Europe) (1988) ECE critical levels workshop Bad Harzburg, 14–18 March 1988, final draft reportGoogle Scholar
  73. UN-ECE (United Nations Economic Commission for Europe) (l992) Critical levels workshop Egham (UK) VDI (Verein Deutscher Ingenieure) (1983) Ermittlung von Maximalen Immissi-onswerten — Grundlagen. VDI 2309, VDI-Handbuch Reinhaltung der Luft Band 1:1–20Google Scholar
  74. Van Camp W, Van Montagu M, Inzé D (1994) Superoxide dismutases. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 317–341Google Scholar
  75. Van Haut H, Stratmann H (l970) Farbatlas über Schwefeldioxid-Wirkungen an Pflanzen. Verlag W. Girardet, EssenGoogle Scholar
  76. Von Schroeder, Reuss (1883) Die Beschädigung der Vegetation durch Rauch und die Oberharzer Hüttenrauchschäden. Parey, BerlinGoogle Scholar
  77. Wellburn AR (1985) SO2 effects on stromal and thylakoid function. In: Winner WE, Mooney HA, Goldstein RA (eds) Sulfur dioxide and vegetation. Stanford University Press, Stanford, pp 133–147Google Scholar
  78. Wentzel KF (1968) Empfindlichkeit und Resistenzunterschiede der Pflanzen gegenüber Luftverunreinigungen. Fortstarchiv 39 (H 9):189–194Google Scholar
  79. Wentzel KF (l984) Das Erzgebirge im Koma. In: Guratsch D (Hrsg) Baumlos in die Zukunft? Kindler Verlag, München, S 49–59Google Scholar
  80. Whelpdale DM (1992) An overview of the atmospheric sulphur cycle. In: Howarth RW, Stewart JWB, Ivanov MV (eds) Sulphur cycling on the continents: wetlands, terrestrial ecosystems and associated water bodies. Wiley, Chichester, pp 5–26Google Scholar
  81. WHO (World Health Organization) (1987) Air Quality Guidelines for Europe. WHO Regional Publications, European Series 23, Copenhagen, 426 ppGoogle Scholar
  82. Winner WE, Mooney HA, Goldstein RA (eds) (1985) Sulfur dioxide and vegetation. Stanford University Press, StanfordGoogle Scholar
  83. Wislicenus H (1908) Über die Grundlagen technischer und gesetzlicher Maßnahmen gegen Rauchschäden. In:VDI (Hrsg) Waldsterben im 19. Jahrhundert, Heft 1:1–80Google Scholar
  84. Zander R (1993) Handwörterbuch der Pflanzennamen. Eugen Ulmer, StuttgartGoogle Scholar
  85. Zimmermann F, Bäucker E, Beer V, Bernhofer Ch, Goldberg V, Lux H, Reuter F, Wienhaus O (l997) Winterschäden 1995/96 in den Kamm-und Hochlagen des Erzgebirges. AFZ/Der Wald 11:579–582Google Scholar

Literatur

  1. Adepipe NO, Ormrod DP (1972) Hormonal regulation of ozone phytotoxicity in Raphanussativus. Z Pflanzenphysiol 68:254–258Google Scholar
  2. Adepipe NO, Khatamian H, Ormrod DP (1973) Stomatal regulation of ozone phytotoxicity in tomato. Z Pflanzenphysiol 68:323–328Google Scholar
  3. Adepipe NO, Fletcher RA, Ormrod DP (1973b) Ozone lesions in relation to sene-scence of attached and detached leaves of tobacco. Atmos Environ 7:357–361Google Scholar
  4. Ashmore MR, Ainsworth N (1995) The effects of ozone and cutting on the species composition of artificial grassland communities. Funct Ecol 9:708–712Google Scholar
  5. Athanassious R (1980) Ozone effects on radish (Raphanus sativus L. Cherry Belle): gradient of ultrastructural changes. Z Pflanzenphysiol 97:227–232Google Scholar
  6. Athanassious R, Klyne MA, Phan CT (1978) Ozone effects on radish (Raphanus sativus cv Cherry Belle): morphological and cellular damage. Z pflanzenphysiol 90:183–187Google Scholar
  7. Atkinson R, Carter WPL (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem Rev 84:437–470Google Scholar
  8. Bae GY, Nakajima N, Ishizuka K, Kondo N (1996) The role of ozone phytotoxicity of the evolution of ehylene upon induction of l-aminocyclopropane-l-carboxylic acid synthase by ozone fumigation in tomato plants. Plant Cell Physiol 37:129–134Google Scholar
  9. Barbo DN, Chapelka AH, Somers GL, Miller-Goodman MS, Stolte KW (1998) Diversity of an early successional plant community as influenccd by ozone. New Phytologist 138:653–662Google Scholar
  10. Barnes JD, Davison AW (1988) The influence of ozone on the winter hardiness of Norway spruce (Picea abies (L.) Karst.). New Phytol 108:159–166Google Scholar
  11. Barnes JD, Brown KA (1990) The influence of ozone and acid mist on the amount and wettability of the surface waxes in Norway spruce (Picea abies (L.) Karst.). New Phytol 114:531–535Google Scholar
  12. Barnes JD, Reiling K, Davison AW, Renner CJ (1988) Interaction between ozone and winter stress. Environ Pollut 53:235–254Google Scholar
  13. Barnes JD, Eamus D, Davison AW, Ro-Poulson H, Mortensen L (1990) Persistent effects of ozone on needle waterloss and wettability in Norway spruce. Environ Pollut 63:345–363Google Scholar
  14. Barnes RL (1972) Effects of chronic exposure to ozone on soluble sugar and ascorbic acid contents of pine seedlings. Can J Bot 50:215–219Google Scholar
  15. Becker KH, Fricke W, Löbel J, Schurath U (1995) Formation, transport, and control of photochemical oxidants. In: Guderian R (ed) Air pollution by photochemical oxidants. Ecol Stud 52, Springer-Verlag, Berlin Heidelberg New York, pp 1–125Google Scholar
  16. Beckerson DW, Hofstra G (1979a) Stomatal responses of white bean to O3 and SO2 singly or in combination. Atmos Environ 13:533–535Google Scholar
  17. Beckerson DW, Hofstra G (1979b) Effect of sulfur dioxide and ozone singly or in combination on leaf chlorophyll, RNA, and pro tein in white bean. Can J Bot 57:1940–1945Google Scholar
  18. Beckerson DW, Hofstra G (1980) Effects of sulfur dioxide and ozone, singly or in combination, on membrane permeability. Can J Bot 58:451–457Google Scholar
  19. Bender J, Manderscheid R, Jäger HJ (1990) Analyses of enzyme activities and other metabolic criteria after five years of fumigation. Environ Pollut 68:331–343Google Scholar
  20. Bender J, Weigel HJ, Jäger HJ (1991) Response of nitrogen metabolism in beans (Phasealus vulgaris L.) after exposure to ozone and nitrogen dioxide, alone and in sequence. New Phytol 119:261–267Google Scholar
  21. Bergmann E, Bender J, Weigel HJ (1998) Zur Ozonempfindlichkeit von Wildpflanzen. In: Nenting W, Poehling M-M (Hrsg) Agrarökologie, Bd 30. Verlag Agrarökologie, BernGoogle Scholar
  22. Bermadinger E, Guttenberger H, Grill D (1990) Physiology of young Norway spruce. Environ Pollut 68:319–330Google Scholar
  23. Blok MC, van der Neut-Koi ECM, van Deenen LLM, De Gier J (1975) Effect of chain length andlipid phase transitions on the selective permeability properties of liposomes. Biochim Biophys Acta 406:187–196Google Scholar
  24. Bobrov RA (1952) The effect of smog on the anatomy of oat leves. Phytopathology 42:558–563Google Scholar
  25. Bobrov RA (1955) The leaf structure of Poa annua with observations on its smog sensitivity in Los Angeles County. Am J Bot 42:467–474Google Scholar
  26. Bolsinger M, Lier ME, Lansky DM, Hughes PR (1991) Influence of ozone air pollution on plant-herbivore interactions, part 1: biochemical changes in ornamen tal milkweed (Asclepias curassavica L.: Asclepiadaceae) induced by ozone, Environ Pollut 72:69–83Google Scholar
  27. Bolsinger M, Lier ME, Hughes PR (1992) Influence of ozone air pollution on plant-herbivore interactions, part 2: effects of ozone on feeding preference, growth and consumption rates of monarch butterflies (Danaus plexippus). Environ Pollut 77:31–37Google Scholar
  28. Bors W, Langebartels C, Michel C, Sandermann H Jr (1989) Polyamines as radical scavengers and protectants agaist ozone damage. Phytochemistry 28:1589–1595Google Scholar
  29. Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116Google Scholar
  30. Brennan E (1975) On exclusion as the mechanism of ozone resistance in virusinfected plants. Phytopathology 65:1054–1 055Google Scholar
  31. Brown KA, Roberts TM (1988) Effects of ozone on foliar leaching in Norway spruce (Picea abies L. Karst. ): confounding factors due to NOx production during ozone generation. Environ Pollut 55:55–73Google Scholar
  32. Brown KA, Roberts TM, Blank LW(1987) Interaction between ozone and cold sensitivity in Norway spruce: a factor contributing to the forest decline in Central Europe. New Phytol 105:149–155Google Scholar
  33. Bücker J (1991) Immissionsbedingte Störungen im Kohlenhydrathaushalt junger Pappeln und Fichten. Westarp Wissenschaften, EssenGoogle Scholar
  34. Bücker J, Guderian R (1994) Accumulation of myo-inositol in Populus as a possinble indication of membrane disintegration due to air pollution. J Plant Physiol 144:121–123Google Scholar
  35. Castillo FJ, Greppin H (1988) Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L.leaves after ozone exposure. Environ Exp Bot 28:231–238Google Scholar
  36. Castillo FJ, Heath RL (1990) Ca2+ transport in membrane vesicles from Pinto bean leaves and its alteration after ozone exposure. Plant Physiol 94:788–795Google Scholar
  37. Castillo FJ, Penel CL, Greppin H (1984) Peroxidase release induced by ozone in Sedum album leaves. Involvement of Ca2+. Plant Physiol 74:846–851Google Scholar
  38. Castillo FJ, Miller PR, Greppin H (1987) Extracellular markers of photochemical oxidant air pollution damage to Norway spruce. Experientia 43:111–115Google Scholar
  39. Chameides WL (1989) The chemistry of ozone deposition to plant leaves: role of ascorbic acid. Environ Sci Technol 23:595–600Google Scholar
  40. Chang CW (1971a) Effect of ozone on sulfhydryl groups of ribosomes in pinto bean leaves. Relationship with ribosome dissociation. Biochem Biophys Res Commun 44:1429–1435Google Scholar
  41. Chang CW (1971b) Effect of ozone on ribosomes in pinto bean leaves. Phytochemistry 10:2863–2868Google Scholar
  42. Chang CW (1972) The influence of ozone on growth and ribosomal RNA in pinto bean plants. Phytochemistry 11:1347–1350Google Scholar
  43. Chanway CP, Runeekles VC (1984) The role of superoxide dismutase in the susceptibility ofbean leaves to ozone injury. Can J Bot 62:236–240Google Scholar
  44. Chevrier N, Sarhan F, Chung YS (1988) Oxidative damages and repair in Euglena gracilis exposed to ozone, I. SH groups and lipids. Plant Cell Physiol 29:321–327Google Scholar
  45. Chevrier N, Chung YS, Sarhan F (1990) Oxidative damages and repair in Euglena gracilis exposed to ozone, II. Membrane permeability and uptake of metabolites. Plant Cell Physiol 31:987–992Google Scholar
  46. Constantinidou HA, Kozlowski TT (1979) Effects of sulfur dioxide and ozone on Ulmus americana seedlings. II. Carbohydrates, proteins and lipids. Can J Bot 57:176–184Google Scholar
  47. Costonis AC, Sinclair WA (1969) Ozone injury to Pinus strobus. J Air Pollut Contr Assoc 19:867–872Google Scholar
  48. Coulson C, Heath RL (1974) Inhibition of the photosynthetic capaeity of isolated chloroplasts by ozone. Plant Physiol 53:32–38Google Scholar
  49. Craker LE (1971) Ethylene production from ozone injured plants. Environ Pollut 1:299–304Google Scholar
  50. Craker LE(1972) Influence of ozone on RNAand protein contents of Lemna minor L. Environ Pollut 3:319–323Google Scholar
  51. Craker LE, Starbuck JS (1972) Metabolic changes assoeiated with ozone injury of bean leaves. Can J Plant Sci 52:589–597Google Scholar
  52. Cunningham WP, Swanson ES (1977) Ozone-induced changes in bean leaf cellular membrane structure: a freeze-fracture electron microscopic study. J Cell Biol 75:207aGoogle Scholar
  53. Curtis CR, Howell RK (1971) Increase in peroxidase isoenzyme activity in bean leaves exposed to low doses of ozone. Phytopathology 61:1306–1307Google Scholar
  54. Curtis CR, Howell RK, Kremer DF (1976) Soybean peroxidases from ozone injury. Environ Pollut 11:189–194Google Scholar
  55. Czuba M, Ormrod DP (1974) Effects of cadmium and zinc on ozone-induced phytotoxicity in cress and lettuce. Can J Bot 52:645–649Google Scholar
  56. Dann MS, Pell EJ (1989) Decline of activity and quantity of ribulose bisphosphate carboxylase/oxygenase and net photosynthesis in ozone-treated potato foiage. Plant Physiol 91:427–432Google Scholar
  57. Darley EF, Stephens ER, Middleton JT, Hanst PL (1959) Oxidant plant damage from ozone-olefin reactions. Int J Air Pollut 1:155–162Google Scholar
  58. Darrall NM (1989) The effect of air pollutants on physiological processes in plants. Plant Cell Environ 12:1–29Google Scholar
  59. Dass HC, Weaver GM (1968) Modification of ozone damage to Phaseolus vulgaris by antioxidants, thiols and sulfhydryl reagents. Can J Plant Sci 48:569–574Google Scholar
  60. Dass HC, Weaver GM (1972) Enzymatic changes in intact leaves of Phaseolus vulgaris following ozone fumigation. Atmos Environ 6:759–763Google Scholar
  61. Davis DD, Wilhour RG (1976) Susceptibility of woody plants to sulfur dioxide and photochemical oxidants. EPA-600/3-76-102, US Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Corvallis, OR, 72 ppGoogle Scholar
  62. Decleire M, DeCat W, DeTemmermann L, Baeten H (1984) Changes of peroxidase, catalase, and superoxide dismutase activities in ozone-fumigated spinach leaves. J Plant Physiol 116:147–152Google Scholar
  63. Dhindsa R (1987) Glutathione status and protein synthesis during drought and subsequent rehydration in Tortula ruralis. Plant Physiol 83:816–819Google Scholar
  64. Dohmen GP, Koppers A, Langebartels C (1990) Biochemical response of Norway spruce (Picea abies (L.) Karst.) towards 14-month exposure to ozone and acid mist: Effects on amino acid, glutathione and polyamine titers. Environ Pollut 64:375–383Google Scholar
  65. Dominy PJ, Heath RL (1985) Inhibition of the K+-stimulated ATPase of the plasma-lemma of Pinto bean leaves by ozone. Plant Physiol 77:43–45Google Scholar
  66. Dugger WM Jr, Palmer RL (1969) Carbohydrate metabolism in leaves of rough lemon as influenced by ozone. Proc First Int Citrus Symp 2:711–715Google Scholar
  67. Dugger WM Jr, Taylor OC, Cardiff E, Thompson CR (1962) Stomatal action in plants as related to damage from photochemical oxidants. Plant Physiol 37:487–491Google Scholar
  68. Dugger WM Jr, Koukol J, Palmer RL (1966) Physiological and biochemical effects of atmospheric oxidants on plants. J Air Pollut Contr Assoc 16:467–471Google Scholar
  69. Dupille E, Rombaldi C, Lelièvre JM, Cleyet-Marel JC, Pech JC, Latche A (1993) Puri-fication, poperties and partial amino-acid sequence of l-aminocyclopropanel-1-carboxylic acid oxidase from apple fruits. Planta 190:65–70Google Scholar
  70. Ebel B, Rosenkranz J, Schiffgens A, Lütz C (1990) Cytological observations on spruce needles after prolonged treatment with ozone and acid mist. Environ Pollut 64:323–335Google Scholar
  71. Edwards GS, Pier PA, Kelly JM (1990) Influence of ozone and soil magnesium status on the cold hardiness of loblolly pine (Pinus taeda L.) seedlings. New Phytol 115:157–164Google Scholar
  72. Eissenstat DM, Syvertsen JP, Dean DJ, Johnson JD, Yelenosky G (1991) Interaction of simulated aeid rain with ozone on freeze resistance, growth, and mineral nutrition in Citrus and avocado. J Am Soc Hort Sci 116:838–845Google Scholar
  73. Elkiey T, Ormrod DP (1979) Ozone and/or sulfur dioxide effects on tissue permeability of petunia leaves. Atmos Environ 13:1165–1168Google Scholar
  74. Endress AG, Suarez SJ, Taylor OC (1980) Peroxidase activity in plant leaves exposed to gaseous HCI or ozone. Environ Pollut 22A:47–58Google Scholar
  75. Engle RL, Gableman WH (1966a) Inheritance and mechanism for resistance to ozone damage in onion, Allium cepa L. Proc Am Soc Hort Sci 89:423–430Google Scholar
  76. Enyedi AJ, Pell EJ (1992) Comparison of the rbcL gene sequence of two potato cultivars with differential sensitivity to ozone. Plant Physiol 99:356–358Google Scholar
  77. Enyedi AJ, Ecckardt NA, Pell EJ (1992) Activity of ribulose bisphosphate carboxylase/ oxygenase from potato cultivars with differential response to ozone stress. New Phytol 122:493–500Google Scholar
  78. EPA (US Environmental Protection Agency) (1976) The photochemical oxidants. In: Diagnosing vegetation injury caused by pollution. Applied Seience Assoeiates, EPA Contract 68-02-1344Google Scholar
  79. EPA (US Environmental Protection Agency) (1978) Effects of photochemical oxidants on vegetation and certain microorganism. In: Air quality criteria for ozone and other photochemical oxidants. EPA-600/8-78-004, pp 253–293Google Scholar
  80. EPA (US Environmental Protection Agency) (1978) Air quality criteria for ozone and other photochemical oxidants. Research Triangle Park, NC:Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office; EPA/600/8-78/004Google Scholar
  81. EPA (US Environmental Protection Agency) (1986) Air quality critreria for ozone and other photochemical oxidants. Research Triangle Park, NC: Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office; EPA/600/8-84/020cFGoogle Scholar
  82. EPA(US Environmental Protection Agency) (1996) Air quality critreria for ozone and related photochemical oxidants. Research Triangle Park, NC: Office of Research and Development, National Center for Environmental Assessement; EPA/600/P-93/004bFGoogle Scholar
  83. Ernst D, Schraudner M, Langebarteis C, Sandermann H Jr (1992) Ozone-induced changes of mRNA levels of ß-l, 3-glucanase, chitinase and ‚pathogenesis-related ‘protein lb in tobacco plants. Plant Mol Biol 20:673–682Google Scholar
  84. Evans LS, Miller PR (1972) Ozone damage to Ponderosa pine: a histological and histochemical appraisal. Am J Bot 59:297–304Google Scholar
  85. Evans LS, Ting IP (1973) Ozone-induced membrane permeability changes. Am J Bot 60:155–162Google Scholar
  86. Fangmeier A, Kress LW, Lepper P, Heck WW (1990) Ozone effects on the fatty acid composition of loblolly pine needles (Pinus taeda L.). New Phytol 115:639–647Google Scholar
  87. Farage PK, Long SP, Lechner EG, Baker NR (1991) The sequence of change within the photosynthetic apparatus of wheat following short-term exposure to ozone. Plant Physiol 95:529–535Google Scholar
  88. Eineher J, Cumming JR, Alseher RG, Rubin G, Weinstein L (1989) Long-term ozone exposure affects winter hardiness of red spruce seedlings. New Phytol 113:8596Google Scholar
  89. Fink S (1991) Unusual patterns in the distribution of calcium oxalate in spruce needles and their possible relationships to the impact of pollutants. New Phytol 119:41–51Google Scholar
  90. Fishman J (1991) The global consequences of increasing tropospheric ozone concentrations. Chemosphere 22:685–695Google Scholar
  91. Fletcher RA, Adepipe NO, Ormrod DP (1972) Abscisic acid protects bean leaves from ozone-induced phytotoxicity Can J Bot 50:2389–2391Google Scholar
  92. Fong F, Heath RL (1981) Lipid content in the primary leaf of bean (Phaseolus vulgaris) after ozone fumigation. Z Pflanzenphysiol 104:109–115Google Scholar
  93. Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25Google Scholar
  94. Frederick PE, Heath RL (1970) Ozone-induced fatty acid viability changes in Chlorella. Plant Physiol 55:15–19Google Scholar
  95. Freebairn HT (1957) Reversal of inhibitory effects of ozone on oxygen uptake of mitochondria. Science 126:303–304Google Scholar
  96. Freebairn HT (1960) The prevention of air pollution damage to plants by use of vitamin C sprays. J Air Pollut Contr Assoc 10:314–317Google Scholar
  97. Freebairn HT (1963) Uptake and movement of 1-14C ascorbic acid in bean plants. Physiol Plant 16:517–522Google Scholar
  98. Freebairn HT, Taylor OC (1960) Prevention of plant damage from air-borne oxidi-zing agents. Proc Am Soc Hort Sci 76:693–699Google Scholar
  99. Freeman B, Sharman MC, Mudd JB (1979) Reaction of ozone with phospholipid vesicles and human erythrocytes. Arch Biochem Biophys 197:264–2732Google Scholar
  100. Fuhrer J, Achermann B (1994) Critical Levels for Ozone. Schriftenreihe der FAC Liebefeld 16:1–328Google Scholar
  101. Fuhrer J, Lehnherr B, Moeri PB, Tschannen W, Shariat-Madari H (1990) Effects of ozone on the grain composition of spring wheat grown in open-top field chambers. Environ Pollut 65:181–192Google Scholar
  102. Fuhrer J, Grandjean-Grimm A, Tschannen W, Shariat-Madari H (1992) The response of spring wheat (Triticum aestivum L.) to ozone at high elevations. II. Changes in yield, yield components and grain quality in response to ozone flux. New Phytol 121:211–219Google Scholar
  103. Galliano H, Heller W, Sandermann H Jr (1993) Ozone induction and purification of spruce cinnamoyl alcohol dehydrogenase. Phytochemistry 32:557–563Google Scholar
  104. Gaspar T, Penel CL, Greppin H (1982) Peroxidases, a survey of their biochemical and physiological roles in higer plants. Univ Geneva Press, GenfGoogle Scholar
  105. Giese AC, Leighton HL, Bailey R (1952) Changes in the absorption spectra of proteins and representative amino acids induced by ultraviolet radiations and ozone. Arch Biochem Biophys 40:71–84Google Scholar
  106. Globitzka S, Bender J, Weigel H-J (1998) Bewertung von Ozonwirkungen auf mittel-europäische Pflanzenarten unter Verwendung existierender Literaturdatenbanken. Projekt Angewandte Ökologie (PAÖ), Förderkennzeichen PAÖ 9707.02, Abschlußbericht. Bundesforschungsanstalt für Landwirtdschaft, Institut für AgrarökologieGoogle Scholar
  107. Grimes HD, Perkins KK, Boss WF (1983) Ozone degrades into hydroxyl radical under physiological conditions. A spin trapping study. Plant Physiol 72:1016–1020Google Scholar
  108. Grünhage L, Krause GHM, Köllner B, Bender J, Weigel H-J, Jäger H-J, Guderian R (2000) A new flux-orientated concept to derive critical levels for ozone to protect vegetation. Environ Pollut (im Druck)Google Scholar
  109. Grunwald C (1968) Effects of sterols on the permeability of alcohol-treated red beet tissue. Plant Physiol 43:484–488Google Scholar
  110. Grunwald C (1970) Sterol distribution in intracellular organelles isolated from tobacco leaves. Plant Physiol 45:663–666Google Scholar
  111. Grunwald C (1971) Effects of free sterols, steryl ester, and steryl glycoside on membrane permeability. Plant Physiol 48:653–655Google Scholar
  112. Guderian R, Tingey DT, Rabe R (1985) Effects of photochemical oxidants on plants. Ecol Stud 52:126–346Google Scholar
  113. Günthardt-Goerg MS, Keller T (1987) Some effects of long-term ozone fumigation on Norway spruce. II. Epicuticular wax and stomata. Trees 1:145–150Google Scholar
  114. Gupta AS, Alseher RG, McCune D (1991) Response of photosynthesis and cellular antioxidants to ozone in Populus leaves. Plant Physiol 96:650–655Google Scholar
  115. Guri A (1983) Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Can J Plant Sci 63:733–737Google Scholar
  116. Haagen-Smit AJ, Fox MM (1956) Ozone formation in photochemical oxidation of organic substances. Ind Eng Chem 48:1484–1487Google Scholar
  117. Hanson GP, Thorne L, Jativa CD (1970) Vitamin C — a natural smog resistance mechanism in plants? Lasca Leaves 20:6–7Google Scholar
  118. Harper DB, Harvey BMR (1978) Mechanism of paraquat toxicity in perennial ryegrass. II. Role of superoxide dismutase and peroxidase. Plant Cell Environ 1:211–215Google Scholar
  119. Hatzios KK (1983a) Interactions of the herbicides EPTC and EPTC plus R-25788 with ozone and antioxidants in corn. J Agric Food Chem 31:1187-1191Google Scholar
  120. Hatzios KK (1983b) Effects of CGA-43089on responses of sorghum (Sorghum bicolor) to metolachlor combined with ozone or antioxidants. Weed Sci 31:280–284Google Scholar
  121. Hausladen A, Madamanchi N, Fellows S, Alseher R, Amundson R (1990) Seasonal changes in antioxidants in red spruce as affected by ozone. New Phytol 115:447458Google Scholar
  122. Heagle AS (1989) Ozone and crop yield. Annu Rev Phytopathol 27:397–423Google Scholar
  123. Heath RL (1975) Ozone. In: Mudd JB, Kozlowski TT (eds) Responses of plants to air pollutants. Academic Press, New York, pp 23–55Google Scholar
  124. Heath RL(1989) Biochemical mechanisms of pollutant stress. In: Heck WW, Taylor OC, Tingey DT (eds) Assessment of crop loss from air pollutants. Elsevier, London, pp 259–286Google Scholar
  125. Heath RL, Castillo FJ (1988) Membrane disturbances in response to air pollutants. In: Schulte-Hostede S, Blank L, Darrall N, Wellburn AR (eds) Air pollution and plant metabolism. DeGruyter, Berlin, pp 55–75Google Scholar
  126. Heath RL, Frederick PE (1979) Ozone alteration of membrane permeability in Chlorella. L. Permeability of potassium ion as measured by 86Rubidium tracer. Plant Physiol 64:455–459Google Scholar
  127. Heck WW (1968) Factors influencing expression of oxidant damage to plants. Annu Rev Phytopatho 16:165–188Google Scholar
  128. Heck WW, Dunning JA (1967) The effects of ozone on tobacco and pinto bean as conditioned by several ecological factors. J Air Pollut Contr Assoc 17:112–114Google Scholar
  129. Heck WW, Dunning JA, Hindawi IJ (l965) Interactions of environmental factors on the sensitivity of plants to air pollution. J Air Pollut Contr Assoc 15:511–515Google Scholar
  130. Heck WW, Taylor OC, Tingey DT (Hrsg) (1988) Assessment of crop loss from air pollutants. Elsevier Applied Science, LondonGoogle Scholar
  131. Heggestad HE, Menser HA (1962) Leaf-spot sensitive tobacco strain Bel W3, a biological indicator of the air pollutant ozone. Phytopathology 52:735Google Scholar
  132. Heiden AC, Hoffmann T, Kley D, Klockow D, Langebarteis C, Mehlhorn H, Sandermann H, Schraudner M, Schuh G, Wildt J (l999) Emission of volatile organic compounds from ozone-exposed plants. Ecol Appl 9:1160–1167Google Scholar
  133. Heller W, Rosemann D, Osswald WF, Benz B, Schönwitz R, Lohwasser K, Kloos M, Sandermann H Jr (l990) Biochemical response of Norway spruce (Picea abies (L.) Karst.) towards 14-month exposure to ozone and acid mist, part I: effects on polyphenol and monoterpene metabolism. Environ Pollut 64:353–366Google Scholar
  134. Hewitt CN, Kok GL, Fall R (1990) Hydroperoxides in plants exposed to ozone mediate air pollution damage to alkene emitters. Nature 344:56–58Google Scholar
  135. Hill AC, Pack MR, Treshow MR, Downs RJ, Transtrum LG (1961) Plant injury induced by ozone. Phytopathology 51:356–363Google Scholar
  136. Hogsett WE, Andersen CP (1998) Ecological effects of tropaspheric ozone: a US perspective — part, present and future. In: Schneider T (ed) Air pollution in the 21th century. Priority issues and policy. Elsevier, Amsterdam, pp 419–433Google Scholar
  137. Hogsett WE, Raba RM, Tingey DT (1981) Biosynthesis of stress ethylene in soybean seedlings: similarities to endogenous ethylene biosynthesis. Physiol Plant 53:307–314Google Scholar
  138. Howell RK (l970) Influence of air pollution on quantities of caffeic acid isolated from leaves of Phaseolus vulgaris. Phytopathology 60:1626–1629Google Scholar
  139. Howell RK, Kremer DF (1973) The chemistry and physiology of pigmentation in leaves injured by air pollution. J Environ Qual 2:434–438Google Scholar
  140. Hurwitz B, Pell EJ, Sherwood RT (1979) Status of coumestrol and 4’,7’-dihydroxyflavone in alfalfa foliage exposed to ozone. Phytopathology 69:810–813Google Scholar
  141. Huttunen S, Soikkeli S (l984) Effects of various gaseous pollutants on plant cell ultrastructure. In: Koziol MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism. Butterworths, London, pp 117–127Google Scholar
  142. Imber D, Tal M (1970) Phenotypic reversion of flacca, a wilty mutant of tomato, by abscisic acid. Science 169:592–593Google Scholar
  143. Jacobson JS (l977) The effects of photochemical oxidants on vegetation. VDI-Berichte 270:163–173Google Scholar
  144. Jäger HJ, Unsworth M, De Temmermann L, Mathy P (1992) Effects of air pollution on agricultural crops. Air Pollut Res Rep 46:1–618Google Scholar
  145. Iones RJ, Mansfield TA (l970) Suppression of stomatl opening in leaves treated with abscisic acid. J Exp Bot 21:714–719Google Scholar
  146. Jordan DN, Green TH, Chappelka AH, Lockaby BG, Meldahl RS, Gjerstad DH (1991) Response of total tannins and phenolics in loblolly pine foliage exposed to ozone and acid rain. J Chem Ecol 17:505–513Google Scholar
  147. Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence systems induced by ozone. Plant Cell Environ 17:783–794Google Scholar
  148. Kargiolaki H, Osborne DJ, Thompson FB (1991) Leaf abscission and stern lesions (intumescences) on poplar clones after SO2 and O3 fumigation: a link with ethylene release? J Exp Bot 42:1189–1198Google Scholar
  149. Kasamo K, Nouchi I (1987) The role of phopholipids in plasma membrane ATPase activity in Vigna radiata L. (mung bean) roots and hypocotyls. Plant Physiol 83:323–328Google Scholar
  150. Keen NT, Taylor OC (1975) Ozone injury in soybean: isoflavonoid accumulation is related to necrosis. Plant Physiol 55:731–733Google Scholar
  151. Keitel A, Arndt U (1983) Ozoninduzierte Turgeszenzverluste bei Tabak (Nicotiana tabacum var Bel W3) — ein Hinweis auf schnelle Permeabilitätsveränderungen der Zellmembranen. Angew Bot 57:193–204Google Scholar
  152. Kerfourn C, Garrec JP (1992) Modifications in the alkane composition of cuticular waxes from spruce needles (Picea abies) and ivy leaves (Hedera helix) exposed to ozone fumigation and acid fog: comparison with needles from dedining spruce trees. Can J Bot 70:861–869Google Scholar
  153. Kerstiens G, Lendzian K (1989a) Interactions between ozone and plant cuticles. I. Ozone deposition and permeability. New Phytol 112:13–19Google Scholar
  154. Kerstiens G, Lendzian K (1989b) Interactions between ozone and plant cuticles. II. Water permeability. New Phytol 112:21–27Google Scholar
  155. Ketterer B (1986) Detoxification reactions of glutathione and glutathione trans-ferases. Xenobiotica 16:957–973Google Scholar
  156. Kicinski HG, Kettrup A, Boos KS, Masuch G (1988) Single and combined effects of continuous and discontinuous O3 and SO2 immissions in Norway spruce needles. II. Metabolic changes. Int J Environ Anal Chem 32:213–241Google Scholar
  157. Kimmerer TW, Kozlowski TT (1982) Ethylene, ethane, acetaldehyde and ethanol production by plants under stress. Plant Physiol 69:840–847Google Scholar
  158. Klumpp G, Guderian R, Küppers K (1989) Peroxidase-und Superoxiddismutase-Aktivität sowie Prolingehalte von Fichtennadeln nach Belastung mit O3, SO2 und NO2. Eur J For Pathol 19:84–97Google Scholar
  159. Knudson-Butler L, Tibbits TW (1979) Stomatal mechanisms determining genetic resistance to ozone in Phaseolus vulgaris L. J Am Soc Hort Sci 104:213–216Google Scholar
  160. Koukol J, Dugger WM Jr (1967) Anthocyanin formation as a response to ozone and smog treatment in Rumex crispus L. Plant Physiol 42:1023–1024Google Scholar
  161. Koziol MJ, Whatley FR (Hrsg) (1984) Gaseous air pollutants and plant metabolism. Butterworths, LondonGoogle Scholar
  162. Kozlowski TT, Mudd JB (1975) Introduction. In: Mudd JB, Kozlowski TT (eds) Responses of plants to air pollution. Academic Press, New York, pp 1–8Google Scholar
  163. Kramer GF, Lee EH, Rowland RA (1991) Effects of elevated CO2 concentration on the polyamine levels of field-grown soybean at three O3 regimes. Environ Pollut 73:137–152Google Scholar
  164. Krause GHM, Köllner B (2000) Wirkungen auf Bäume und Waldökosysteme. In: Kommission Reinhaltung der Luft im VDI und DIN Normenausschuß (Hrsg) Troposphärisches Ozon, Bd 32, S 93–113Google Scholar
  165. Krupa SV, Tonneijck AEG, Manning WJ (1998) Ozone. In: Flagler RB (ed) Recognition of air pollution injury to vegetation. A pictural atlas, 2nd edn. Air Waste Management Association, Pittburgh, Pennsylvania, pp 2-1-2-28.Google Scholar
  166. Laisk A, Kull O, Moldau H (1989) Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol 90:1163–1167Google Scholar
  167. Langebarteis C, Kerner K, Leonardi S, Schraudner M, Trost M, Heller W, Sandermann H Jr (1991) Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 95:882–889Google Scholar
  168. Ledbetter MC, Zimmerman PW, Hitchcock AE (1959) The histopathological effects of ozone on plant foliage. Contrib BoyceThompson Inst 20:275–282Google Scholar
  169. Lee EH, Bennett JH (1982) Superoxide dismutase. A possible protective enzyme against ozone injury in snap beans (Phaseolus vulgaris L.). Plant Physiol 69:1444–1449Google Scholar
  170. Lee EH, Jersey JA, Gifford C, Bennett J. (1984) Differential ozone tolerance in soybean and snapbeans: analysis of ascorbic acid in O3-susceptible and O3-resistant cultivars by high-performance liquid chromatography. Environ Exp Bot 24:331–341Google Scholar
  171. Lee TT (1966) Chemical regulation of ozone susceptibility in Nicotiana tabacum. Can J Bot 44:487–496Google Scholar
  172. Lee TT (1967) Inhibit ion of oxidative phosphorylation and respiration by ozone in tobacco mitochondria. Plant Physiol 42:691–696Google Scholar
  173. Lee TT (1968) Effect of ozone on swelling of tobacco mitochondria. Plant Physiol 43:133–139Google Scholar
  174. Lehnherr B, Grandjean A, Mächler F, Fuhrer J (1987) The effect of ozone in ambient air on ribulosebisphosphate carboxylase/oxygenase activity decreases photo-synthesis and grain yield in wheat. J Plant Physiol 130:189–200Google Scholar
  175. Lendzian K (1984) Permeability of plant cuticles to gaseous air pollutants. In: Koziol MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism. Butterworths, London, pp 77–82Google Scholar
  176. Lendzian K, Kerstiens G (1991) Sorption and transport of gases and vapors in plant cuticles. Rev Environ Contam Toxicol 121:65–128Google Scholar
  177. Lieberman M (1979) Biosynthesis and action of ethylene. Annu Rev Plant Physiol 30:533–591Google Scholar
  178. Linzon SN (1967) Ozone damage and semimature-tissue needle blight of eastern white pine. Can J Bot 45:2047–2061Google Scholar
  179. Linzon SN, Heck WW, Mac Dowall FDH (1975) Effects of photochemical oxidants on vegetation. In: Photochemical air pollution: formation, transport, effects. National Research Council, Canada, pp 89–142Google Scholar
  180. Loewus F (1971) Carbohydrate interconversions. Annu Rev Plant Physiol 22:337–364Google Scholar
  181. Lucas PW, Cottam DA, Sheppard LJ, Francis BJ (1988) Growth responses and delayed winter hardening in Sitka spruce following summer exposure to ozone. New Phytol 108:495–504Google Scholar
  182. Luwe MWF, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol 101:969–976Google Scholar
  183. Macdowall FDH (1965) Stages of ozone damage to respiration of tobacco leaves. Can J Bot 43:419–427Google Scholar
  184. Mackay CE, Senaratna T, McKersie BD, Fleteher RA (1987) Ozone induced injury to cellular membranes in Triticum aestivum L. and protection by the Triazole S-3307. Plant Cell Physiol 28:1271–1278Google Scholar
  185. Madamanchi NR, Anderson JV, Alscher RG, Cramer CL, Hess JL (1992) Purification of multiple forms of glutathione reductase from pea (Pisum sativum L.) seedlings and enzyme levels in ozone-fumigated pea leaves. Plant Physiol 100:138–145Google Scholar
  186. Maier-Maercker U (1988) Entlignifizierung im Spaltöffnungsbereich bei Fichten vom Wank-Profil und nach Ozonbelastung. GSF-Bericht 17/88:439–455Google Scholar
  187. Maier-Maercker U (1989) Delignification of subsidiary and guard cell walls of Picea abies (L.) Karst. by fumigation with ozone. Trees 3:57–64Google Scholar
  188. Maier-Maercker U, Koch W (1991) Experiments on the control capaciy of stomata of Picea abies (L.) Karst. after fumigation with ozone and in environmentally damaged material. Plant Cell Environ 14:175–184Google Scholar
  189. Malan C, Greyling MM, Gressel J (1990) Correlation between CuZn superoxide dismutase and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci 69:157–166Google Scholar
  190. Manderscheid R, Jäger HJ, Kress LW (1992) Effects of ozone on foliar nitrogen metabolism of Pinus taeda L. and implications for carbohydrate metabolism. New Phytol 121:623–633Google Scholar
  191. Mapson LW (1958) Metabolism of ascorbic acid in plants, part I: function. Annu Rev Plant Physiol 9:119–150Google Scholar
  192. Marre E (1979) Fusicoccin: a tool in plant physiology. Annu Rev Plant Physiol 30:273–288Google Scholar
  193. Marsh D, Watts A, Knowles PF (1976) Evidence for phase boundary lipid. Permeability of tempocholine in dimyristocyl phosphatidyl-choline vesicles at the phase transition. Biochemistry 15:3570–3578Google Scholar
  194. Matters G, Scandalios J (1987) Synthesis of isozymes of superoxide dismutase in maize leaves in response to O3, SO2 and elevated O2, J Exp Bot 38:842–852Google Scholar
  195. Matyssek R, Havranek WM, Wieser G, Innes JL (1997) Ozone and the forests ins Austria and Switzerland. Ecol Stud 127:95–134Google Scholar
  196. McKersie BD, Hucl P, Beversdorf WD (1982) Solute leakage from susceptible and tolerant cultivars of Phaseolus vulgaris following ozone exposure. Can J Bot 60:73–78Google Scholar
  197. McLaughlin SB (1985) Effects of air pollution on forests. J Air Pollut Contr Assoc 35:512–534Google Scholar
  198. McNair Scott DB, Lesher EC (1963) Effect of ozone on survival and permeability of Escherichia coli. J Bacterio 185:567–576Google Scholar
  199. Mehlhorn H (1990) Ethylene-promoted ascorbate peroxidase activity protects plants against hydrogen peroxide, ozone and paraquat. Plant Cell Environ 13:971–976Google Scholar
  200. Mehlhorn H (1995) Bedeutung des Phytohormons Ethylen für die Reaktion von Pflanzen gegenüber oxidativem Streß unter besonderer Berücksichtigung der Ozontoxizität. Habilitationsschrift, EssenGoogle Scholar
  201. Mehlhorn H, Wellburn AR (1987) Stress ethylene formation determines plant sensitivity to ozone. Nature 327:417–418Google Scholar
  202. Mehlhorn H, Wenzel AA (1996) Manganese deficiency enhances ozone toxicity in bush beans (Phaseolus vulgaris L.cv. Saxa). J Plant Physiol 148:155–159Google Scholar
  203. Mehlhorn H, Seufert G, Schmidt A, Kunert KJ (1986) Effect of SO2 and O3 on production of antioxidants in conifers. Plant Physiol 82:336–338Google Scholar
  204. Mehlhorn H, Cottam DA, Lucas PW, Wellburn AR (1987) Induction of ascorbate peroxidase and glutathione reductase by interactions of air pollutants. Free Radiat Res Commun 3:193–197Google Scholar
  205. Mehlhorn H, Tabner BJ, Wellburn AR (1990) Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone. Physiol Plant 79:377–383Google Scholar
  206. Mehlhorn H, O’Shea JM, Wellburn AR (1991) Atmospheric ozone interacts with stress ethylene formation by plants to cause visible leaf injury. J Exp Bot 42:17–24Google Scholar
  207. Menser HA (1964) Response of plants to air pollutants. III. A relation between ascorbic acid levels and ozone susceptibiltiy of light preconditioned tobacco plants. Plant Physio 139:564–567Google Scholar
  208. Menser HA, Chaplin JF (1969) Air pollution: effects on the phenol and alkaloid content of cured tobacco leaves. Tob Sci 13:169Google Scholar
  209. Menser HA, Chaplin JF (1977) Polyphenols, phytosterols, and redueing sugars in air-cured tobacco leaves injured by ozone air pollution. Tob Sci 21:35–38Google Scholar
  210. Menser HA, Heggestad HE (l966) Ozone and sulfur dioxide synergism: injury to tobacco plants. Science 153:424–425Google Scholar
  211. Menser HA, Chaplin JF, Cheng ALS, Sorokin T (1977) Polyphenols, phytosterols, and redueing sugars in air-cured tobacco leaves injured by ozone air pollution. Tob Sci 21:35–38Google Scholar
  212. Menser HA, Chaplin JF, Cheng ALS, Sorokin T (1977) Polyphenols, phytosterols, and redueing sugars in air-cured tobacco leaves injured by ozone air pollution. Tob Sci 21:35–38Google Scholar
  213. Menzel DB (l984) Ozone: an overview of its toxicity in man and animals. J Toxicol Environ Health 13:183–204Google Scholar
  214. Mersie W, Mebrahtu T, Rangappa M (l990) Response of corn to combiantions of atrazine, propyl gallate and ozone. Environ Exp Bot 30:443–449Google Scholar
  215. Middleton JT (1961) Photochemical air pollution damage to plants. Annu Rev Plant Physiol 12:431–448Google Scholar
  216. Miller PR, McBride JR (1998) Oxidant air pollution impacts in the montane forests of southern California. Acase study in the San Bernadino Mountains. Ecol Stud 134. Springer-Verlag, Berlin Heidelberg New York, 424 ppGoogle Scholar
  217. Miller JE, Patterson RP, Pursley WA, Heagle AS, Heck WW (1989) Response of soluble sugars and starch in field-grown cotton to ozone, water stresss, and their combination. Environ Exp Bot 29:477–486Google Scholar
  218. Mittler R, Zilinskas BA (1991) Purification and characterization of pea cytosolic ascorbate peroxidase. Plant Physiol 97:962–968Google Scholar
  219. Miyake H, Furukawa A, Totsuka T, Maeda E (1984) Differential effects of ozone and sulphur dioxide on the fine structure of spinach leaf cells. New Phytol 96:215–228Google Scholar
  220. Miyake H, Matsumura H, Fujinuma Y, Totsuka (1989) Effects of low concentrations of ozone on the fine structure of radish leaves. New Phytol 111: 187–195Google Scholar
  221. Mudd JB (l982) Peroxyacylnitrates. In: Mudd JB, Kozlowski TT (eds) Responses of plants to air pollution. Academic Press, New York, pp 97–119Google Scholar
  222. Mudd JB (1982) Effects of oxidants on metabolic function. In: Unsworth MH, Ormrod DP (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworth, London, pp 189–203Google Scholar
  223. Mudd JB, Leavitt R, Ongun A, McManus TT (1969) Reaction of ozone with amino aeids and proteins. Atmos Environ 3:669–682Google Scholar
  224. Mudd JB, McManus TT, Ongun A, McCullogh TE (1971) Inhibition of glycolipid biosynthesis in chloroplasts by ozone and sulfhydryl reagents. Plant Physiol 48:335–339Google Scholar
  225. Mumford RA, Lipke H, Laufer DA, Feder WA (1972) Ozone-induced changes in com pollen. Environ Sci Technol 6:427–430Google Scholar
  226. Murata N, Fork DC (1976) Temperature dependence of the light-induced spectral shift of carotenoids in Cyanidium caldarium and higher plant leaves: evidence for an effect of the physical phase of chloroplast membrane lipids on th permeability of the membrane to ions. Biochim Biophys Acta 461:365–378Google Scholar
  227. Nakamura H, Saka H (1978) Photochemical oxidants injury in rice plants. III. Effects of ozone on physiological activities in rice plants. Ipn J Crop Sci 47:707–714Google Scholar
  228. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880Google Scholar
  229. Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140Google Scholar
  230. Nobel PS, Wang CT (1973) Ozone increases the permeability of isolated pea chloroplasts. Arch Biochem Biophys 157:388–394Google Scholar
  231. Noble RD, Pechak D, Jensen KF (1980) Ozone effects on the ultrastructure of the chloroplasts from hybrid poplar leaves. Micron 11:13–14Google Scholar
  232. Nouchi I, Toyama S (1988) Effects of ozone and peroxyacetyl nitrate on polar lipids and fatty acids in leaves of morning glory and kidney bean. Plant Physiol 87:638–646Google Scholar
  233. Ojanperä K, Sutinen S, Pleijel H, Sellden G (1992) Exposure of spring wheat, Triticum aestivum L.,cv. Drabant, to different concentrations of ozone in open-top chambers: effects on the ultrastructure of flag leaf cells. New Phytol 120:39–48Google Scholar
  234. Olszyk DM, Tingey DT (1984a) Phytotoxicity of air pollutants. Evidence for the photodetoxification of SO2 but not O3. Plant Physiol 74:999–1005Google Scholar
  235. Olszyk DM, Tingey DT (1984b) Fusicoccin and air pollutant injury to plants. Evidence for enhancement of SO2 but not O3 injury. Plant Physiol 76:400–402Google Scholar
  236. Ordin L, Hall MA (1962) Studies on cellulose synthesis by a cell-free oat coleoptile enzyme system: inactivation by air borne oxidants. Plant Physiol 42:205–212Google Scholar
  237. Ordin L, Taylor OC, Propst BE, Cardiff EA (1962) Use of antioxidants to protect plants from oxidant type air pollutants. Int J Air Pollut 6:223–227Google Scholar
  238. Ormrod DP (1977) Cadmium and nickel effects on growth and ozone sensitivity of pea. Water Air Soil Pollut 8:263–270Google Scholar
  239. Ormrod DP, Beckerson DW (1986) Polyamines as antiozonants for tomato. Hort-science 21:1070–1071Google Scholar
  240. Osswald WF, Heinisch H, Elstner EF (1986) Influence of mineral nutrition, ozone and acid mist on the content of the fungitoxic compound p-hydroxyacetophenon in spruce needles (Picea abies L.Karst.). Forstw Centralbl 105:261–264Google Scholar
  241. Otto HW, Daines RH (1969) Plant injury by air pollutants: influence of humidity on stomatal apertures and plant response to ozone. Science 163:1209–1210Google Scholar
  242. Pallaghy CK, Raschke K (1972) No stomatal response to ethylene. Plant Physiol 49:275–276Google Scholar
  243. Papahadjopoulos D, Jacobsen K, Nir S, Isac T (1973) Phase transition in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effects of temperature and cholesterol. Biochim Biophys Acta 311:330–348Google Scholar
  244. Patton RL, Garraway MO (1986) Ozone-induced necrosis and increased peroxidase activity in hybrid poplar (Populus sp.) leaves. Environ Exp Bot 26:137–141Google Scholar
  245. Pauls KP, Thompson JE (1980) In vitro simulation of senescence-related membrane damage by ozone-induced lipid peroxidation. Nature 283:504–506Google Scholar
  246. Pauls KP, Thompson JE (1981) Effects of in vitro treatment with ozone on the physical and cemical properties of membranes. Physiol Plant 53:255–262Google Scholar
  247. Pauls KP, Thompson JE (1982) Effects of cytokinins and antioxidants on the susceptibility of membranes to ozone damage. Plant Cell Physiol 23:821–832Google Scholar
  248. Pell EJ, Weissberger WC (1976) Histopathological characterization of ozone injury to soybean foliage. Phytopathology 66:856–861Google Scholar
  249. Pell EJ, Pearson NS (1983) Ozone-induced reduction in quantity of ribulose-l,5-bisphosphate carboxylase in alfalfa foliage. Plant Physiol 73:185–187Google Scholar
  250. Pell EJ, Lukezic FL, Levine RG, Weissberger WC (1977) Response of soybean foliage to reciprocal challenges by ozone and a hypersensitive-response-inducing pseudomonad. Phytopathology 67:1342–1345Google Scholar
  251. Pell EJ, Eckardt N, Enyedi AJ (1992) Timing of ozone stress and resulting status of ribulose bisphosphate carboxylase/oxygenase and associated net photosynthesis. New Phytol 120:397–405Google Scholar
  252. Perchorowicz JT, Ting IP (1974) Ozone effects on plant cell permeability. Am J Bot 61:787–793Google Scholar
  253. Percy KE, Jensen KF, McQuattie CJ (1992) Effects of ozone and acidc fog on red spruce needle epiculticular wax production, chemical composition, cuticular membrane ultrastructure and needle wettability. New Phytol 122:71–80Google Scholar
  254. Peters JL, Castillo J, Heath RL (1989) Alteration of ectracellular enzymes in Pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide. Plant Physiol 89:159–164Google Scholar
  255. Pitcher LH, Brennan E, Hurley A, Dunsmuir P, Tepperman JM, Zilinskas BA (1991) Overproduction of petunia chloroplastic copper/zinc superoxide dismutse does not confer ozone tolerance in transgenic tobacco. Plant Physiol 97:452–455Google Scholar
  256. Podleckis EV, Curtis CR, Heggestad HE (1984) Peroxidase enzyme markers for ozone sensitivity in sweet corn. Phytopathology 74:572–577Google Scholar
  257. Polle A, Rennenberg H (1991) Superoxide dismutase activity in needles of Scots pine and Norway spruce under field and chamber conditions: lack of ozone effects. New Phytol 117:335–343Google Scholar
  258. Polle A, Chakrabarti K, Schürmann W, Rennenberg H (1990) Composition and properties of hydrogen peroxide decomposing system in extracellular and total extracts from needles of Norway spruce (Picea abies L., Karst.). Plant Physiol 94:312–319Google Scholar
  259. Price A, Lucas PW, Lea PJ (1990) Age dependent damage and glutathione metabolism in ozone fumigated barley: A leaf section approach. J Exp Bot 41:1309–1317Google Scholar
  260. Pryor WA, Prier DG, Church DF (1983) Detection of free radicals from low-temperat ure ozone-olefin reactions by ESR spin trapping: evidence that the radical precursor is a trioxide. J Am Chem Soc 105:2883–2888Google Scholar
  261. Raab MM, Weinstein LH (1990) Polyamine and ethylene metabolism in Triticum aestivum (var. vona). In: Flores HE, Arteca RN, Shannon JC (eds) Polyamines and ethylene: biochemistry, physiology and interactions. American Society of Plant Physiologists, Rockville, MD, pp 408–410Google Scholar
  262. Rabe R, Kreeb KH (1979) Enzyme activities and chlorophyll and protein content in plants as indicators of air pollution. Environ Pollut 19:119–137Google Scholar
  263. Reddy GN, Arteca RN, Dai YR, Flores HE, Negm FB, Pell EJ (1993) Changes in ethylene and polyamines in relation to mRNA levels of the large and small subunits of ribulose bisphosphate carboxylase/oxygenase in ozone-stressed potato foliage. Plant Cell Environ 16:819-826Google Scholar
  264. Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3:63–91Google Scholar
  265. Reich PB, Amundson RG (1985) Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science 230:566–570Google Scholar
  266. Rich S (1964) Ozone damage to plants. Annu Rev Phytopathol 2:253–266Google Scholar
  267. Rich S, Waggoner PE, Tomlinson H (1970) Ozone uptake by bean leaves. Science 169:79–80Google Scholar
  268. Ridge I, Osborne DJ (1970) Regulation of peroxidase activity by ethylene in Pisum sativum: requirements for protein and mRNA synthesis. J Exp Bot 21:720–734Google Scholar
  269. Rosemann D, Heller W, Sandermann H Jr (1991) Biochemical plant responses to ozone. II. Induction of stilbene biosynthesis in Scots pine (Pinus sylvestris L.) seedlings. Plant Physiol 97:1280–1286Google Scholar
  270. Rosen PM, Runeekles VC (1976) Interaction of ozone and greenhouse whitefly in plant injury. Environ Conserv 3:70–71Google Scholar
  271. Rowland-Bamford AJ, Borland AM, Lea PJ, Mansfield TA (1989) The role of arginine decarboxylase in modulating the sensitivity of barley to ozone. Environ Pollut 61:95–106Google Scholar
  272. Rubin B, Penner D, Saettler AW (1983) Induction of isoflavonoid production in Phaseolus vulgaris L.leaves by ozone, sulfur dioxide and herbicide stress. Environ Toxicol Chem 2:295–306Google Scholar
  273. Rufner R, Witham PH, Cole H Jr (1975) Ultrastructure of chloroplasts of Phaseolus vulgaris leaves treated with Benomyl and ozone. Phytopathology 65:345–349Google Scholar
  274. Runeekles VC, Palmer K (1987) Pretreatment with nitrogen dioxide modifies plant response to ozone. Atmos Environ 21:717–719Google Scholar
  275. Runeekles VC, Vaartnou M (1997) Observations on the in situ detection of free radicals in leaves using electon paramagnetic resonance spectrometry. Can J Bot 70:192–199Google Scholar
  276. Sakaki T, Kondo N, Sugahara K (1983) Breadkdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: role of active oxygens. Physiol Plant 59:28–34Google Scholar
  277. Sakaki T, Ohnishi J, Kondo N, Yamada M (1985) Polar and neutral lipid changes in spinach leaves with ozone fumigation: triacylglycerol synthesis from polar lipids. Plant Cell Physiol 26:253–262Google Scholar
  278. Sakaki T, Saito K, Kawaguchi A, Kondo N, Yamada M (1990) Conversion of mono-galactosyldiacylglycerols to triacylglycerols in ozone-fumigated spinach leaves. Plant Physiol 94:766–787Google Scholar
  279. Sandermann H, Wellburn AR, Heath RL (1997) Forest decline and ozone. A comparison of controlled chamber and field experiments. Ecol Stud 127:1–400Google Scholar
  280. Schier GA, McQuattie CJ, Jensen KP (1990) Effect of ozone and aluminium on pitch pine (Pinus rigida) seedlings: growth and nutrient relations. Can J For Res 20:1714–1719Google Scholar
  281. Schlagnhaufer CD, Glick RE, Arteca RN, Pell EJ (1995) Molecular cloning of an ozone-induced l-aminocyclopropane-l-carboxylate synthase cDNA and its relationship with a loss of rbcS in potato (Solanum tuberosum L.) plants. Plant Mol Biol 28:93–103Google Scholar
  282. Schmitt R, Sandermann H Jr (1990) Biochemical response of Norway spruce (Picea abies (L.) Karst.) towards 14 month exposure to ozone and acid mist, part II: effects on pro tein biosynthesis. Environ Pollut 64:367–373Google Scholar
  283. Schmitt U, Ruetze M, Liese W (1987) Rasterelektronenoptische Untersuchungen an Stomata von Pichten-und Tannennadeln nach Begasung und saurer Beregnung. Eur J Por Pathol 17:118–124Google Scholar
  284. Schulte-Hostede S, Blank LW, Darrall NM, Wellburn AR (1988) Air pollution and plant metabolism. DeGruyter, BerlinGoogle Scholar
  285. Shaaltiel Y, Lazer A, Bocion PP, Gressel J (1988) Cross tolerance to herbicides and environmental oxidants of plant biotype tolerant to paraquat, sulfur dioxide and ozone. Pestic Biochem Physiol 31:13–23Google Scholar
  286. Siegel SM (1962) Protection of plants agaist airborne oxidants: cucumber seedlings at extreme ozone levels. Plant Physiol 37:261–266Google Scholar
  287. Skärby L, Pell EJ (1979) Concentrations of coumestrol and 4’, 7’-dihydroxyflavone in four alfalfa cultivars after exposure to ozone. J Environ Qual 8:285–286Google Scholar
  288. Skeffington RA, Roberts TM (1985) The effects of ozone and mist on Scot’s pine saplings. Oecologia 65:201–206Google Scholar
  289. Smidt S (1984) Begasungsversuche mit SO2 und Ozon an jungen Fichten. Eur J For Pathol 14:241–248Google Scholar
  290. Smith G, Neyra C, Brennan E (1990) The relationship between foliar injury, nitrogen metabolism, and growth parameters in ozonated soybeans. Environ Pollut 63:79–93Google Scholar
  291. Spotts RA, Lukezic FL, LaCasse NL (1975) The effect ofbenzimidazole, cholesterol, and a steroid inhibitor on leaf sterols and ozone resistance of bean. Phytopathology 65:45–49Google Scholar
  292. Staehelin J, Hoigne J (1985) Decomposition of ozone in water in the presence of organic solutes as promoters and inhibitors of radical chain reactions. Environ Sci Technol 19:1206–1213Google Scholar
  293. Stan HJ, Schicker S, Kassner H (1981) Stress ethylene evolution of bean plants — a parameter indicating ozone pollution. Atmos Environ 15:391–395Google Scholar
  294. Stan HJ, Schicker S (1982) Effect of repetitive ozone treatment on bean plants, stress ethylene production and necrosis. Atmos Environ 16:2267–2270Google Scholar
  295. Sutinen S (1987) Ultrastructure of mesophyll cells of spruce needles exposed to O3 alone and together with SO2. Eur J For Pathol 17:362–368Google Scholar
  296. Sutinen S, Skärby L, Wallin G, Sellden G (1990) Long-term exposure of Norway spruce, Picea abies(L.) Karst., to ozone in open-top chambers. II. Effects on the ultrastructure of needles. New Phytol 115:345–355Google Scholar
  297. Sutton R, Ting IP (1977) Evidence for repair of ozone induced membrane injury: alteration in sugar uptake, Atmos Environ 11:273–275Google Scholar
  298. Swanson ES, Thomson WW, Mudd JB (1973) The effect of ozone on leaf cell membranes. Can J Bot 51:1213–1219Google Scholar
  299. Swanson ES, Toivio-Kinnucan M, Heath R, Cunningham WP (1982) Ozone-induced ultrastructural changes in the plasma membrane of Chlorella sorokiniana. Plant Cell Environ 5:375–383Google Scholar
  300. Szent-Györgyi A (1928) Observation on the function of peroxidase systems and the chemistry of the adrenal cortex. Biochem J 22:1387–1409Google Scholar
  301. Tanaka K, Suda Y, Kondo N, Sugahara K (1985) O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts. Plant Cell Physiol 26:1425–1431Google Scholar
  302. Tandy N, Digiulio R, Richardson C (1989) Assay and electrophoresis of superoxide dismutase from red spruce (Picea rubens Sarg.), loblolly pine (Pinus taeda L.) and Scotch pine (Pinus sylvestris L.). Plant Physiol 90:742–748Google Scholar
  303. Taylor GE, Gunderson CA (1986) The response of foliar gas exchange to exogenously applied ethylene. Plant Physiol 82:653–657Google Scholar
  304. Taylor GE Jr, DeRoo HG, Waggoner PE (1960) Moisture and fleck of tobacco. Tob Sci 4:62–68Google Scholar
  305. Taylor GE Jr, Tingey DT, Ratsch HC (1982) Ozone flux in Glycine max (L.) Merr.: sites of regulation and relationship to leaf injury. Oecologia 53:179–186Google Scholar
  306. Taylor GE Jr, Ross-Todd BM, Gunderson CA (1988) Action of ozone on foliar gas exchange in Glycine max L. Merr: a potential role for endogenous ethylene. New Phytol 110:301–307Google Scholar
  307. Taylor OC (1984) Organismal responses ofhigher plants to atmospheric pollutants: photochemical and other. In: Treshow M (ed) Air pollution and plant life. Wiley, Chichester, pp 215-238Google Scholar
  308. Thomson WW, Dugger WM, Palmer RL (1966) Effects of ozone on the fine structure of the palisade parenchyma cells of bean leaves. Can J Bot 44:1677–1682Google Scholar
  309. Thomson WW, Nagahashi J, Platt K (l974) Further observation on the effects of ozone on the ultrastructure of leaf tissue. In: Dugger M (ed) Air pollution effects on plant growth. Am Chem Symp Ser (Gould RF ser ed) 3:83–93Google Scholar
  310. Thomson WW (1975) Effects of air pollutants on plant ultrastructure. In: Mudd JB, Kozlowski TT (ed) Responses of plants to air pollutants. Academie Press, New York, pp 179–194Google Scholar
  311. Thorne L, Hanson GP (l972) Speeies differences in rates ofvegetal ozone absorption. Environ Pollut 3:303–312Google Scholar
  312. Ting IP, Dugger WM Jr (1968) Factors affecting ozone sensitivity and susceptibility of cotton plants. J Air Pollut Contr Assoc 18:810–813Google Scholar
  313. Ting IP, Mukerji SK (1971) Leaf ontogeny as a factor in susceptibility to ozone: amino acid and carbohydrate changes during expansion. Am J Bot 58:497–504Google Scholar
  314. Tingey DT, Hogsett WE (l985) Water stress reduces ozone injury via astomatal mechanism. Plant Physiol 77:944–947Google Scholar
  315. Tingey DT, Taylor GE Jr (1982) Variation in plant response to ozone: a conceptual model of physiological events, In: Unsworth H, Ormrod DP (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworth, London, pp 113–138Google Scholar
  316. Tingey DT, Fites RC, Wickliff C (1973a) Ozone alteration of nitrate reduction in soybean. Physiol Plant 29:33-38Google Scholar
  317. Tingey DT, Fites RC, Wickliff C (1973b) Foliar sensitivity of soybeans to ozone as related to severalleaf parameters. Environ Pollut 4:183–192Google Scholar
  318. Tingey DT, Fites RC, Wiekliff C (l975) Activity changes in selected enzymes from soybean leaves following ozone exposure. Physiol Plant 33:316–320Google Scholar
  319. Tingey DT, Fites RC, Wickliff C (1976a) Differential foliar sensitivitiy of soybean cultivars to ozone assoeiated with differential enzyme activities. Physiol Plant 37:69–72Google Scholar
  320. Tingey DT, Standley C, Field RW (1976b) Stress ethylene evolution: a measure of ozone effects on plants. Atmos Environ 10:69–974Google Scholar
  321. Tingey DT, Wilhow RG, Standley C (1976c) The effect of chronic ozone exposures on the metabolite content of Ponderosa pine seedlings. For Sci 22:234–241Google Scholar
  322. Todd GW (l958) Effect of ozone and ozonated l-hexene on respiration and photo-synthesis of leaves. Plant Physiol 33:416–420Google Scholar
  323. Tomlinson H, Rich S (1967) Metabolic changes in free amino acids of bean leaves exposed to ozone. Phytopathology 57:972–974Google Scholar
  324. Tomlinson H, Rich S (1968) The ozone resistance of leaves as related to their sulfhydryl and adenosine triphosphate content. Phytopathology 58:808–810Google Scholar
  325. Tomlinson H, Rieh S (1969) Relating lipid content and fatty acid synthesis to ozone injury of tobacco leaves. Phytopathology 59:1284–1286Google Scholar
  326. Tomlinson H, Rich S (1970a) Lipid peroxidation, a result of injury in bean leaves exposed to ozone. Phytopathology 60:531–1532Google Scholar
  327. Tomlinson H, Rich S (1970b) Disulfides in bean leaves exposed to ozone. Phytopathology 60:1842–1843Google Scholar
  328. Tomlinson H, Rich (1971) Effect of ozone on sterols and sterol derivatives in bean leaves. Phytopathology 61:1404–1405Google Scholar
  329. Tomlinson H, Rich S (1973) Anti-senescent compounds reduce injury and steroid changes in ozonated leaves and their chloroplasts. Phytopathology 63:903–906Google Scholar
  330. Townsend AM (1974) Sorption of ozone by nine shade tree species. J Am Soc Hort Sci 99:206–208Google Scholar
  331. Treshow M, Harner FM, Price HE, Kormelink JR (1969) Effects of ozone on growth, lipid metabolism, and sporulation of fungi. Phytopathology 59:1223–1225Google Scholar
  332. Treshow M (1970) Ozone damage to plants. Environ Pollut 1:155–161Google Scholar
  333. Treshow M (Hrsg) (1984) Air pollution and plant life. Wiley, ChichesterGoogle Scholar
  334. Trevathan LE, Moore LD, Orcutt DM (1979) Symptom expression and free sterol and fatty acid composition of flue-cured tobacco plants exposed to ozone. Phytopathology 69:582–585Google Scholar
  335. Trimble JL, Skelly JM, Tolin SA, Orcutt DM (1982) Chemical and structural characterization of the needle epicuticular wax of two clones of Pinus strobus differing in sensitivity to ozone. Phytopathology 72:652–656Google Scholar
  336. Tuomainen J, Betz C, Kangasjärvi J, Ernst D, Yin Z-H, Langebarrels C, Sandermann H Jr (1997) Ozone induction of ethylene emission in tomato plants: regulation by differential accumulation of transcripts for the biosynthetic enzymes. Plant J 12:1151–1162Google Scholar
  337. Turner NC, Rich S, Tomlinson H (1972) Stomatal conductance, fleck injury, and growth of tobacco cultivars varying in ozone tolerance. Phytopathology 62:63–67Google Scholar
  338. UBA (Umweltbundesamt) (1999) Jahresbericht 1998 aus dem Meßnetz des Umweltbundesamtes. Texte 66/9 Umweltbundesamt, BerlinGoogle Scholar
  339. UN/ECE (United Nation Economic Commission for Europe) (1993) Workshop on critical levels for ozone, Bern 1-4 Nov 1993. Background papers, Swiss Federal Office of the Environment and FACGoogle Scholar
  340. Unsworth MH, Ormrod DP (eds) (1982) Effects of gaseous air pollution in agriculture and horticulture. Butterworths, LondonGoogle Scholar
  341. Van Den Driessche R, Langebarteis C (1994) Foliar symptoms, ethylene biosynthese and water use of young Norway spruce (Picea abies (L.) Karst.) exposed to drought and ozone. Water Air Soil Pollut 78:153–168Google Scholar
  342. Vargo RH, Pell EJ, Smith SH (1978) Induced resistance to ozone injury of soybean by tobacco ringspot virus. Phytopathology 68:715–719Google Scholar
  343. VDI (1989) Maximum immission concentrations for ozone. VDI 2310:1–54Google Scholar
  344. VDI (2000) Maximale Immissions-Werte zum Schutz der Vegetation. Maximale Immissions-Konzentrationen für Ozon. VDI 2310, B16. Beuth, BerlinGoogle Scholar
  345. Vendryes Jones J, Pell EJ (1981) The influence of ozone on the presence of isoflavones in alfalfa foliage. J Air Pollut Contr Assoc 31:885–886Google Scholar
  346. Volz A, Kley D (1988) Evaluation of the Montsouris series of ozone measurements made in the nineteenth century. Nature 332:240–242Google Scholar
  347. Von Tiedemann A, Weigel HJ, Jäger HJ (1991) Effects of open-top chamber fumigations with ozone on three fungalleaf diseases of wheat and the mycoflora of the phyllosphere. Environ Pollut 72:205–224Google Scholar
  348. Warmbt W (1979) Ergebnisse langjähriger Messungen des bodennahen Ozons in der DDR. Z Meteorol 29:24–31Google Scholar
  349. Wedding RT, Erickson LC (1955) Changes in the permeability of plant cells to p32O4 and water as a result of exposure to ozonated hexene (smog). Am J Bot 42:570–575Google Scholar
  350. Weigel HJ, Bender J (2000) Wirkungen von Ozon auf landwirtschaftliche Pflanzen und Wildplanzenarten. In: Kommission Reinhaltung der Luft im VDZ und DIN-Normenausschuß (Hrsg) Troposphärisches Ozon, Bd 32, S 115–135Google Scholar
  351. Wellburn FAM, Wellburn AR (1996) Variable patterns of antioxidant protection but similar ethene emission differences in several ozone-sensitive and ozone-tolerant plant selections. Plant Cell Environ 19:754–760Google Scholar
  352. Wenzel AA, Mehlhorn H (1995) Zinc deficiency enhances ozone toxicity in bush beans (Phaseolus vulgaris L. cv, Saxa). J Exp Bot 46:867–872Google Scholar
  353. Wenzel AA, Schlautmann H, Jones CA, Küppers K, Mehlhorn H (1995) Amino-ethoxyvinylglycine, cobalt and ascorbic acid all reduce ozone toxicitiy in mung beans by inhibition of different steps during ethylene biosynthesis. Physiol Plant 93:286–290Google Scholar
  354. Whitaker BD, Lee EH, Rowland RA (1990) EDU and ozone protection: Foliar glycep-rolipids and steryllipids in snapbean exposed to ozone. Physiol Plant 80:286–293Google Scholar
  355. Wolfenden J, Wellburn AR (1991) Effects of summer ozone on membrane lipid compos ition during subsequent frost hardening in Norway spruce (Picea abies (L.) Karst). NewPhytol 118:323–329Google Scholar
  356. Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189Google Scholar
  357. Zelitch I (1969) Stomatal control. Annu Rev Plant Physiol 20:329–350Google Scholar
  358. Zilinskas BA, Greenhalgh-Weidman B, Brennan E (1990) The relationship between EDU pre-treatment and C2H4 evolution in ozonated pea plants. Environ Pollut 65:241–249Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • B. Degen
  • F. Scholz
  • A. Fangmeier
  • R. Guderian
  • H.-J. Jäger
  • H. Mehlhorn

There are no affiliations available

Personalised recommendations