Advertisement

Wirkungen auf Pflanzen: Grundlagen

  • R. Guderian
  • H. Braun
  • H.-J. Jäger
  • L. Grünhage
  • J. Bender
  • H. J. Weigel
  • J. Bücker
Chapter
  • 223 Downloads

Zusammenfassung

Die Immissionsökologie ist jener Teilder Ökologie, der sich mit dem Einfluß von Luftverunreinigungen auf die Biosphäre befaßt. Sie untersucht Wirkungen von Luftverunreinigungen auf Pflanze und Tier in ihren Wechselbeziehungen mit den Medien Boden, Wasser und Luft und auf die daraus resultierenden ökosystemaren Strukturen und Funktionen. Hinsichtlich der dabei angewandten Methoden sei u. a. auf die Kapitel 3.2 und 3.3 sowie auf Bd. 2B,Kap. 3.1 bis 3.3 verwiesen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Andersen A, Ott R, Schramm E (1986) Der Freiberger Hüttenrauch 1849-1865. Umweltauswirkungen, ihre Wahrnehmung und Verarbeitung. Technikgeschichte 53:169–199Google Scholar
  2. Augustin S (1997) Forstbodenkunde. In: Umweltbundesamt (Hrsg) Auswertung der Waldschadensforschungsergebnisse (1982-1992) zur Aufklärung komplexer Ursache-Wirkungsbeziehungen mit Hilfe systemanalytischer Methoden. E. Schmidt, Berlin, S 147–292Google Scholar
  3. Börtitz S, Däßler HG (1992) J.A. Stöckhardts grundlegende Beiträge zur Immissi-onsforschung und deren heutige Bedeutung. Wiss Z Techn. Universität Chemnitz-Zwickau 34:281–292Google Scholar
  4. Dörries W (1932) Über die Brauchbarkeit der spektroskopischen Phäophytinprobe in der Rauchschadendiagnostik. Z Pflanzernkrankh Pflanzenschutz 42:257–273Google Scholar
  5. Freytag M (1869) Über die Einwirkung der schwefligen Säure auf die Vegetation. Mitt königllandwirtschaftl Akademie Poppelsdorf 2:34–58Google Scholar
  6. Garber C (1967) Luftverunreinigungen und ihre Wirkungen. Gebr Bornträger, BerlinGoogle Scholar
  7. Gerlach C (1908) Die Ermittlung des Säuregehaltes der Luft in der Umgebung von Rauchquellen und der Nachweis seines Ursprungs. In: VDI (Hrsg) Waldsterben im 19. Jahrhundert. VDI-Verlag Düsseldorf 1985. Heft 3:3–24Google Scholar
  8. Gerlach C (1914) Der Ursprungsnachweis der Rauchsäuren in den an Baumstämmen abfließenden Niederschlagswässern mittels eines selbsttätigen Separators und der Einfluß dieses sauren Wassers auf den Boden. In: VDI (Hrsg) Waldsterben im 19. Jahrhundert. VDI-Verlag Düsseldorf 1985. Heft 9:1–56Google Scholar
  9. Guderian R (1970) Untersuchungen über die quantitativen Beziehungen zwischen dem Schwefelgehalt von Pflanzen und dem Schwefeldioxidgehalt der Luft. Z Pflanzenkrankh Pflanzenschutz 77:200–220; 289-308; 387-399Google Scholar
  10. Guderian R, Stratmann H (1968) Freilandversuch zur Ermittlung von Schwefel-dioxidwirkungen auf die Vegeatation. III. Teil: Grenzwerte schädlicher SO2-Immissionen für Obst-und Forstkulturen sowie für landwirtschaftliche und gärtnerische Pflanzenarten. Forschungsberichte des Landes NRW 1920. West-deutscher Verlag, KölnGoogle Scholar
  11. Guderian R, van Haut H (1970) Nachweis von Schwefeldioxid-Wirkungen an Pflanzen. Staub Reinhalt Luft 30:17–26Google Scholar
  12. Hartig R (1896) Über die Einwirkung des Hütten-und Steinkohlenrauches auf die Gesundheit der Nadelwaldbäume. Forst Naturw Z 5:245–290Google Scholar
  13. Haselhoff E (1932) Grundzüge der Rauchschadenskunde. Gebr Bornträger, BerlinGoogle Scholar
  14. Haselhoff E, Lindau G (1903) Die Beschädigung der Vegetation durch Rauch. Gebr Bornträger, BerlinCrossRefGoogle Scholar
  15. Haselhoff E, Bredemann G, Haselhoff W (1932) Entstehung, Erkennung und Beurteilung von Rauchschäden. Gebr Bornträger, BerlinGoogle Scholar
  16. Hasenclever R (1879) Über die Beschädigung der Vegetation durch saure Gase. Springer-Verlag, BerlinGoogle Scholar
  17. von Haut H, Stratmann H (1970) Farbatlas über Schwefeldioxid-Wirkungen an Pflanzen. Girardet, EssenGoogle Scholar
  18. Hitchcock AE, Zimmermann PW, Coe RR (1962) Results of ten years’ work (1950-1960) on the effects of fluorides on gladiolus. Contrib Boyce Thompson Inst 21 (5):303–344Google Scholar
  19. Katz M (1937) Report on the effect of dilute sulphur dioxide on alfalfa. In: National Research Council of Canada: Trail Smelter Question. Doc. Sero DD Append. DD3, OttawaGoogle Scholar
  20. Keller T (1977) Begriff und Bedeutung der „latenten Immissionsschädigung“. Allg Forst Jagdz 148:115–120Google Scholar
  21. Knabe W (1982) Immissionsökologische Waldzustandserfassung. Ergebnisse und ihre Bedeutung für die Forstwirtschaft in Nordrhein-Westfalen. In: Sonderheft LÖLF-Mitteilungen S 43–57Google Scholar
  22. Liesegang W (1932) Über den Nachweis von Verunreinigungen durch Industriegase in der freien atmosphärischen Luft. Kleine Mitt Wasser-, Boden-u Lufthygiene Berlin-Dahlem 8,7(1l):174–181Google Scholar
  23. Neger FW (1919) Ein neues untrügliches Merkmal für Rauchsch äden bei Laubhölzern. Angew Bot 1:129–138Google Scholar
  24. Noack K (1929) Untersuchungen über die Rauchschäden der Vegetation. Z Angew Chem 42:123–126CrossRefGoogle Scholar
  25. O’Gara PJ (1922) Abstract of paper: Sulphur dioxide and fume problems and their solutions. Ind Eng Chem 14:744Google Scholar
  26. Ost H (1896) Untersuchungen von Rauchschäden. Chemiker 20:166Google Scholar
  27. Ost H (1907) Der Kampf gegen schädliche Industriegase. Z Angew Chem 20: 1689–1693CrossRefGoogle Scholar
  28. Reuss C (1893) Rauchbeschädigungen in den Gräflich v. Tiele-Winkler’schen For-strevieren Myslowitz-Kattowitz. GoslarGoogle Scholar
  29. Rusnov P (1919) Die Entkalkung des Bodens durch den Einfluß SO2-haltiger Rauchgase. Centralbl Forstwesen 45:283–290Google Scholar
  30. von Schroeder J (1872) Einwirkung der schwefligen Säure auf die Pflanzen. Die LandwVersuchsst 15:321–355Google Scholar
  31. von Schoeder J (1873) Einwirkung der schwefligen Säure auf die Pflanzen. Die Landw Versuchsst 22:447–470Google Scholar
  32. von Schoeder J, Reuss C (1883) Die Beschädigung der Vegetation durch Rauch und die Oberharzer Hüttenrauchschäden. Parey, BerlinGoogle Scholar
  33. Smith RA (1872) Air and Rain. The beginnings of a chemical climatology. Longmans, Green and Co, LondonGoogle Scholar
  34. Sorauer P (1911) Die mikroskopische Analyse rauchbeschädigter Pflanzen. In:VDI (Hrsg) Waldsterben im 19. Jahrhundert. VDI Verlag Düsseldorf 1985. Heft 7:1–58Google Scholar
  35. Sorauer P, Ramann E (1899) Sogenannte unsichtbare Rauchbeschädigungen. Bot Centralbl 80:50–56; 106-116; 156-168; 205-216; 251-262Google Scholar
  36. Stöckhardt A (1850a) Ueber einige durch den Bergbau und Hüttenbetrieb für die Landescultur entstehenden Benachteiligungen. In: Z Dtsch Landwirte NS 1:33–38; 129-137Google Scholar
  37. Stöckhardt A (1850b) Ueber die Einwirkung des Rauches der Silberhütten auf die benachbarte Vegetation. Polytech Centralbl 257–278Google Scholar
  38. Stöckardt A (1871) Untersuchungen über die schädliche Einwirkung des Hütten-und Steinkohlenrauches auf das Wachstum der Pflanzen, insbesondere Fichte und Tanne. Tharandter Forstliches Jahrbuch 21:218–254Google Scholar
  39. Stöckardt A (1872) Untersuchungen über die schädliche Einwirkung des Hütten-rauches und des Steinkohlenrauches auf das Pflanzenwachstum. Der Chem Ackersmann 18:24–47; 111-121Google Scholar
  40. Stoklasa J (1923) Die Beschädigung der Vegetation durch Rauchgase und Fabrikex-halationen. Urban und Schwarzenberg, BerlinGoogle Scholar
  41. Schwela D (1983) Vergleich der nassen Deposition von Luftverunreinigungen in den Jahren um 1870 mit heutigen Belastungen. Staub-Reinhaltung der Luft 43:135–139Google Scholar
  42. Thomas MD, Hill GR Jr (1935) Absorption of sulphur dioxide by alfalfa and its relation to leaf injury. Plant Physiol l0:291–307CrossRefGoogle Scholar
  43. Thomas MD, Hendricks RH, Collier TR, Hill GR (1943) The utilization of sulphate and sulphur dioxide for the sulphur nutrition of alfalfa. Plant Physiol 19:227–244CrossRefGoogle Scholar
  44. Thomas MD (1951) Gas damage to plants. Annu Rev Plant Physiol 2:293–321CrossRefGoogle Scholar
  45. Tingey DT, Reinert RA (1975) The effect of ozone and sulfur dioxide singly and in combination on plant growth. Environ Pollut 9:117–125CrossRefGoogle Scholar
  46. Turner E, Christison R (1828) Über die Wirkung der giftigen Gase auf Pflanzen. Poggend. Ann Phys 14:259–273CrossRefGoogle Scholar
  47. Ulrich B (1986) Natural and anthropogenie components of soil acidification. Z Pflanzen ernähr Bodenkd 149:702–717CrossRefGoogle Scholar
  48. Wentzel KF (1966) Landschaftsschutz gegen Immissionen. Angew Bot 40:1–11Google Scholar
  49. Wentzel KF (1985) Oberförster Reuss aus Goslar-bleibende Erkenntnis der Rauchschadensforschung im 19. Jahrhundert. In: VDI Berichte 560: Waldschäden. Einflußfaktoren und ihre Bewertung. Kommission Reinhaltung der Luft, Düsseldorf, 9–20Google Scholar
  50. Wieler A (1897) Über unsichtbare Rauchschäden an Nadelbäumen. Z Forst Jagd-wesen 29:513–529Google Scholar
  51. Wieler A (1905) Untersuchungen über die Einwirkung schwefliger Säure auf die Pflanzen. Gebr Bornträger, BerlinGoogle Scholar
  52. Wieler A (1912) Pflanzenwachstum und Kalkmangel im Boden. Gebr Bornträger, BerlinGoogle Scholar
  53. Wienhaus O, Däßler HG, Börtitz S (1994) Tharandter Beiträge zur Phytochemie von SO2-Wirkungen. Essener Ökol Schrift 4:39–51Google Scholar
  54. Wislicenus H (1898) Resistenz der Fichte gegen saure Rauchgase bei ruhender und tätiger Assimilation. Tharandter Forstl Jahrb 48:152–172Google Scholar
  55. Wislicenus H (1914) Experimentelle Rauchschäden. In: VDI (Hrsg) Waldsterben im 19. Jahrhundert. VDI-Verlag Düsseldorf 1985, Heft 10:1–168Google Scholar
  56. Wislicenus H (1931) Die bisherige Arbeit und die nächsten Ziele des Institutes für Pflanzenchemie und Holzforschung, Dresden-Tharandt. Sonderdruck aus dem Tharandter Forstl Jahrbuch 221–241Google Scholar
  57. Wislicenus H, Neger FW (1914) Experimentelle Untersuchungen über die Wirkung der Abgassäuren auf die Pflanze. Mitt Königl Sächs Forstl Versuchsanstalt zu Tharandt, Bd 1, Heft 3Google Scholar

Literatur

  1. Adams MB, Edwards NT, Taylor GE Jr, Skaggs BL (1990) Whole-plant 14C-photo-synthate allocation in Pinus taeda: seasonal patterns at ambient and elevated ozone levels. Can J For Res 20:152–158CrossRefGoogle Scholar
  2. Adams MR, Glyer JD, McCarl BA (1988) The NCLAN Economic Assessment: approach, findings and implications. In: Heck WW et al (Hrsg) Assessment of crop loss from air pollutants. Elsevier Applied Science, London, S 473–504CrossRefGoogle Scholar
  3. Andersen CP, Rygiewicz PT (1991) Stress interactions and mycorrhizal plant response: Understanding carbon allocation priorities. Environ Pollut 73:217–244CrossRefGoogle Scholar
  4. Augustin S (1997) Forstbodenkunde. In: Umweltbundesamt (Hrsg) Auswertung der Waldschadensforschungsergebnisse (1982-1992) zur Aufklärung komplexer Ursache-Wirkungsbeziehungen mit Hilfe systemanalytischer Methoden. UBA, Berlin 6/97Google Scholar
  5. Blum U, Tingey DT (1977) A study of the potential ways in which ozone could reduce root growth and nodulation of soybean. Atmos Environ 11:737–739CrossRefGoogle Scholar
  6. Bormann FH (1985) Air pollution and forests: an ecosystem perspecvtive. BioScience 35:434–441CrossRefGoogle Scholar
  7. Brandt B (1962) Effects of air pollution on plants. In: Stern AC (Hrsg) Air pollution, voll. Academic Press, London, S 255–281Google Scholar
  8. Bücker J (1991) Immissionsbedingte Störungen im Kohlenhydrathaushalt junger Pappeln und Fichten. Verlag Westarp Wissenschaften, Magdeburg; ISBN 3-89432-050-8Google Scholar
  9. Bücker J, Ballach HJ (1992) Alterations in carbohydrate levels in leaves of Populus due to ambient air pollution. Physiol Plant 86:512–517CrossRefGoogle Scholar
  10. Däßler HG (1991) Einfluß von Luftverunreinigungen auf die Vegetation: Ursachen — Wirkungen — Gegenmaßnahmen. Gustav Fischer, JenaGoogle Scholar
  11. Däßler HG, Börtitz S (1971) Zur Wirkungsweise von Luftverunreinigungen auf landwirtschaftliche Erzeugnisse. Biol Zentralbl 90:611–619Google Scholar
  12. Davinson SR, Barnes JD (1998) Effects of ozone on wild plants. New Phytologist 139:135–151CrossRefGoogle Scholar
  13. Eller MB(1977) Beeinflussung der Energiebilanz von Blättern durch Straßenstaub. Angew Bot 51:9–15Google Scholar
  14. Eller MB, Brunner U (1975) Der Einfluß von Straßenstaub auf die Strahlungsab-sorption durch Blätter. Arch Met Geoph Biokl Ser B 23:137–146CrossRefGoogle Scholar
  15. EPA (Environmental Protection Agency, 1986) Air quality criteria for ozone and other photochemical oxidants, vol III of V. Environmental Criteria and Assessment Office Research Triangle Park NC 27711; EPA/6008-84/020cFGoogle Scholar
  16. EPA (Environmental Protection Agency, 1998) Air quality criteria for ozone and related photochemical oxidants, vol II of III. National Center for Environmental Assessment Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park NC 27711; EPA/600/P-93/004bFGoogle Scholar
  17. Fangmeier A, Hadwiger-Fangmeier A, v. der Eerden L, Jäger HJ (1994) Effects of atmospheric ammonia on vegetation — a review. Environ Pollut 86:43–82CrossRefGoogle Scholar
  18. Feder WA (1970) Plant response to chronic exposures to low levels of oxidant type air pollution. Environ Pollut 1:73–79CrossRefGoogle Scholar
  19. Grill D, Zellnig G, Bermadinger-Stabentheiner E, Müller M (1993) Strukturelle Veränderungen in Abhängigkeit verschiedener Luftschadstoffe. Forstw Centralbl 112:2–11CrossRefGoogle Scholar
  20. Guderian R, Küppers K (1980) Responses of plant communities to air pollution. sProc Symp Effects of air pollutants on mediterranian and temperate ecosysterns, Riverside, Ca, S 187–197Google Scholar
  21. Guderian R, Tingey DT (1987) Notwendigkeit und Ableitung von Grenzwerten für Stickstoffoxide. UBA-Berichte 1/87, Erich Schmidt Verlag, BerlinGoogle Scholar
  22. Guderian R, van Haut H, Stratmann H (1960) Probleme der Befassung und Beurteilung von Wirkungen gasförmiger Luftverunreinigungen auf die Vegetation. Z Pflanzenkrankh Pflanzenschutz 67:257–264Google Scholar
  23. Guderian R, Tingey DT, Rabe R (1983) Wirkungen von Photooxidantien auf Pflanzen. In: Umweltbundesamt (Hrsg) Luftqualitätskriterien für photochemische Oxidantien. Erich Schmidt, Berlin, Berichte 5/83:205–427Google Scholar
  24. Guderian R, Ballach H-J, Klumpp A, Klumpp G, Küppers K, Vogels K, Willenberg IM (1987) Reactions of Norway spruce to air pollution in fumigation experiments and in damaged forest stands. In: EPA (Hrsg) Effects of atmospheric pollutants on the spruce-fir forests of Eastern United States and the Federal Republic of Germany, Burlington, Vermont, S 389–405Google Scholar
  25. Guderian R, Wienhaus O(1997) „Neuartige Waldschäden“ und Luftverunreinigungen. In: Deutscher Forstverein e V (Hrsg) Deutscher Forstverein, Jahresbericht 1996, Niedenstein, S 181–200Google Scholar
  26. Hampp R, Schäffer C (1995) Mycorrhiza — Carbohydrate and energy metabolism. Mycorrhiza, Springer-Verlag, Berlin Heidelberg NewYork, S 267–296Google Scholar
  27. Heggestad HE, Heck WW (1971) Nature, extent, and variation of plant response to air pollutants. Adv Agron 23:111–145CrossRefGoogle Scholar
  28. Hoque E (1990) Biochemie und Physiologie erkrankter Fichten. Ecomed Verlag, LandsbergGoogle Scholar
  29. Kluge H (1993) Nur die Buchen überlebten. Forst und Holz 48:462–466Google Scholar
  30. Klumpp A, Guderian R (1990a) Leachimg von Magnesium, Calcium und Kalium aus immissionsbelasteten Nadeln junger Fichten (Picea abies (L) Karst). I. Ein-fluß von O3 und SO2 auf die Kationenauswaschung in Abhängigkeit von Nadelalter und der Azidität der Lösung. Forstw Cenralbl l09:13–21CrossRefGoogle Scholar
  31. Klumpp A, Guderian R (1990) Leaching von Magnesium, Calcium und Kalium aus immissionsbelasteten Nadeln junger Fichten (Picea abies (L) Karst). II. Jahres-zeitlicher Verlauf der Ionenauswaschung O3/SO2-belasteter Fichten unter-schiedlicher Mg-und Ca-Versorgung. Forstw Centralbl l09:21–28Google Scholar
  32. Klumpp A, Guderian R (1990c) Leaching von Magnesium, Calcium und Kalium aus immissionsbelasteten Nadeln junger Fichten (Picea abies (L) Karst). III. Wirkung einer regelmäßigen Benebelung auf die Mineralstoffgehalte immissi-onsbelasteter Fichtennadeln. Forstw Cbl 109:28–39CrossRefGoogle Scholar
  33. Konnert M (1992) Genetische Untersuchungen in gesch ädigten Weißtannenbe-ständen (Abies alba Mill) Südwestdeutschlands. Mitt der Forstl Versuchs-und Forschungsanstalt Baden-Württemberg, H 167, 120 SGoogle Scholar
  34. Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14CrossRefGoogle Scholar
  35. Liebold E, Drechsler M (1991) Schadenszustand und-entwicklung in den SO2-geschädigten Fichtengebieten Sachsens. AFZ 10:492–494Google Scholar
  36. Luck RF (1980) Impact of oxidant air pollution on ponderosa and Jeffry pine cone production. In: Miller PR (Hrsg) Proceedings of symposium on effects of air pollutants on Mediterranean and temperate forest ecosysterns, 240. Berkely, CA, US Dep of Agriculture, Forest Service, General Tech Rep PSW-43Google Scholar
  37. Materna J (1987) Waldschäden in der CSSR.Österr Forstztg 1:17–19Google Scholar
  38. McClenahen JR (1984) Air pollutant effects on forest communities. In: Davis DD et al (eds) Air pollution and the productivity of the forest: proceedings of the symposium: Oct 1983. Izaak Walton League of Arnerica, Washington DC, Arlington VA, pp 83–94Google Scholar
  39. Miller PR, Parmeter JR, Taylor OC Jr, Cardiff EA (1963) Ozone injury to the foliage of Pinusponderosa. Phytopathol 53:1072–1076Google Scholar
  40. Miller PL (1973) Oxidant-induced community change in a mixed conifer forest. In: Nägele JA (Hrsg) Air pollution damage to vegetation. American Chemical Society, Washington DC, Adv Chem 122:101–117CrossRefGoogle Scholar
  41. Mohr H (1994) Stickstoffeintrag als Ursache neuartiger Waldschäden. Spektrum der Wissenschaft, 48–53Google Scholar
  42. Müller-Starck G (1985) Genetic differences between „tolerant“ und „sensitive“ beeches (Fagus sylvatica L.). Silvae Genetica 34:241–247Google Scholar
  43. Odum EP (1985) Trends expected in stressed ecosystems. BioScience 35:419–422CrossRefGoogle Scholar
  44. Perchorowicz JT, Ting IP (1974) Ozone effects on plant cell permeability. Am J Bot 61:787–793CrossRefGoogle Scholar
  45. Pleijel H, Skärby L, Wallin G, Sellden G (1991) Yield and grain quality of spring wheat (Triticum aestivum L. cv. Trabant) exposed to different concentrations of ozone in open top chambers. Environ Pollut 69:151–168CrossRefGoogle Scholar
  46. Skärby L, Sellden G, Mortensen L, Bender J, Iones M, DeTemmermann L, Wenzel A, Fuhrer J (1993) Resposes of cereals exposed to air pollutants in open-top chambers. In: Jäger HJ et al (eds) Effcects of air pollution on agricultural crops in Europe. Air Poll Res Rep 46:241–259Google Scholar
  47. Thienemann A (1956) Leben und Umwelt: vom Gesamthaushalt der Natur. Rowohlt, HamburgGoogle Scholar
  48. Tingey DT, Andersen CP (1991) The physological basis of differential plant sensitivity to changes in atmospheric quality. In: Taylor GE Jr et al (eds) Ecological genetics and air pollution. Springer-Verlag, Berlin Heidelberg New York, pp 209–235CrossRefGoogle Scholar
  49. Tingey DT, Taylor GE Jr (1982) Variation in plant response to ozone.: a conceptional model of physiological events. In: Unsworth MH, Ormrod DPM (eds) Effects of gaseous air pollutants in agricvulture and horticulture. Butterworth, London, 111–138Google Scholar
  50. Tingey DT, Wilhour RG, Taylor OC (1979) The measurement of plant responses. Handbook of methodology for the assessment of air pollution effects on vegetation. Air Pollut Contr Assoc, Pittsburgh, 7.1–7.35Google Scholar
  51. Turunen M, Huttunen S (1990) A review of the response of epicuticular wax of conifer needles to air pollution. J Environ Qual 19:35–45CrossRefGoogle Scholar
  52. Weigel HJ, Adaros G, Jäger HJ (1990) Yield responses of different crop species to long-term fumigation with sulfur dioxide in open-top chambers. Environ Pollut 67:15–28CrossRefGoogle Scholar
  53. Wentzel KF (1984) Das Erzgebirge im Koma. In: Guratsch D (Hrsg) Baumlos in die Zukunft? Kindler Verlag, München, S 49–59Google Scholar
  54. Willenbrink J, Schatten T (1993) CO2-Fixierung und Assimilatverteilung in Fichten unter Langzeitbegasung mit Ozon. Forstw Centralbl 112:50–56CrossRefGoogle Scholar
  55. Wolak J (1971) Relationship between increase in air pollution toxicity and elevation above ground. Wyd Inst Badascy Lesnictwa, Warschau, PolenGoogle Scholar

Literatur

  1. Albaugh TJ, Mowry FL, Kress LW (1992) A field chamber for testing air pollution effects on mature trees. J Environ Qual 21:476–485CrossRefGoogle Scholar
  2. Allen LH, Drake BG, Rogers HH, Shinn JH (1993) Field techniques for exposure of plants and ecosystems to elevated CO2 and other trace gases. Crit Rev Plant Sci 11:85–119Google Scholar
  3. Arndt U, Nobel W, Schweizer B (1987) Bioindikatoren. Ulmer, StuttgartGoogle Scholar
  4. Ashenden TW, Tabner PW, Williams P, Whitemore ME, Mansfield TA (1982) A large-scale system for exposing plants to SO2 and NO2. Environ Pollut 3:21–26CrossRefGoogle Scholar
  5. Ashmore MR, Bell JNB, Mimmack A (1988) Crop growth along a gradient of ambient air pollution. Environ Pollut 53:99–121CrossRefGoogle Scholar
  6. Buckenham AH, Parry MA, Whittingham CP, Young AT (1981) An improved opentopped chamber for pollution studies. Environ Pollut 2:275–282CrossRefGoogle Scholar
  7. Buckenham AH, Parry MAJ, Whittingham CP (1982) Effects of aerial pollutants on the growth and yield of spring barley. Ann Appl Biol 100:179–187CrossRefGoogle Scholar
  8. Chevone BJ, Yang YS, Winner WE, Storks-Colter J, Long SJ (1984) A rainfall simulator for laboratory use in acidic precipitation studies. J Air Pollut Contr Assoc 31:355–359CrossRefGoogle Scholar
  9. Collvill KE, Bell RM, Roberts TM, Bradshaw AD (1983) The use of open-top chambers to study the effects of air pollutants, in particular sulphur dioxide, on the growth of reyegrass Lolium perenne L, part II. The long term effect of filtering polluted urban air or adding SO2 to rural air. Environ Pollut 31:35–55CrossRefGoogle Scholar
  10. Darley EF, Lerman S, Oshima RJ (1968) Plant exposure chambers for dust studies. J Air Pollut Contr Assoc 18:28–29CrossRefGoogle Scholar
  11. DeCormis L, Bonte J, Tisne A (1975) Experimental technique for determining the effect on vegetation of sulphur dioxide pollutants applied continuously in subnecrotic doses. Pollut Atmospherique 17:103–107Google Scholar
  12. Ennis CA, Lazrus AL, Kok GL, Zimmerman PR, Monso RK (1990) A branch chamber system and techniques for simultaneous pollutant exposure experiments and gaseous flux determinations. Tellus Ser B 42:170–182CrossRefGoogle Scholar
  13. EPA (1987) Air pollution exposure systems and experimental protocols, voll: a review and evaluation of performance. US Environmental Protection Agency 600/3-87/037aGoogle Scholar
  14. Evans LS, Lewin KF, Patti MJ, Cunningham FA (1983) Productivity of field-grown soybeans exposed to simultated acidic rain. New Phytol 93:377–388CrossRefGoogle Scholar
  15. Fowler D, Duyzer JH, Baldocchi DD (1991) Inputs of trace gases, particles and cloud droplets to terrestial surfaces. Proc R Soc Edinb 97B:35–39Google Scholar
  16. Grennwood P, Greenhalgh A, Baker C, Unsworth M (1982) A computer-controlled system for exposing field crops to gaseous air polllutants. Atmospheric Environ 16:2261–2266CrossRefGoogle Scholar
  17. Grünhage L, Jäger H-J (1994) Influence of the atmospheric conductivity on the ozone exposure of plants under ambient conditions: considerations for establishing ozone standards to protect vegetation. Environ Pollut 85:12–129Google Scholar
  18. Guderian R (1977) Air pollution. Phytotoxicity of acidic gases and its significance in air pollution control. Ecol Stud 22. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. Guderian R, Küppers K, Six R (1985b) Wirkungen von Ozon, Schwefeldioxid und Stickstoffdioxid auf Fichte und Pappel bei unterschiedlicher Versorgung mit Magnesium und Kalzium sowie auf die Blattflechte Hypogymnia physodes. VDI-Berichte 560:657–701Google Scholar
  20. Guderian R, Stratmann H (1962) Freilandversuche zur Ermittlung von Schwefeldi-oxidwirkungen auf die Vegetation. Teil 1. Übersicht zur Versuchsmethodik und Versuchsauswertung. Forschungsbericht des Landes Nordrhein-Westfalen Nr. 1118. Westdeutscher Verlag, KölnGoogle Scholar
  21. Guderian R, Tingey DT, Rabe R (1985a) Effects of photochemical oxidants on plants. In: Guderian R (ed) Air pollution by photochemical oxidants. Ecol Stud 52. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  22. Heagle AS, Body DE, Heck WW (1973) An open-top field chamber to assess the impact of air pollution on plants. J Environ Qual 2:365–368CrossRefGoogle Scholar
  23. Heagle AS, Miller JE, Sherill DE (1994) A white clover system to estimate effects of tropospheric ozone on plants. J Environ Qual 23: 613–621CrossRefGoogle Scholar
  24. Heagle AS, Philbeck RB (1979) Exposure techniques. In: Heck WW, Krupa SV, Linzon SN (eds) Methodology for the assessment of air pollution effects on vegetation. Air Pollution Control Association, PittsburghGoogle Scholar
  25. Heagle AS, Philbeck RB, Brewer PF, Ferrell RF (1983) Responses of soybeans to simulated acid rain in the field. J Environ Qual 12:539–543Google Scholar
  26. Heck WW, Taylor OC, Tingey DT (1988) Assessment of crop losses from air pollutants. Elsevier Science, LondonCrossRefGoogle Scholar
  27. Hendrey GR (1993) FACE: free-air CO2 enrichment for plant research in the field. CRC Press, YBoca RatonGoogle Scholar
  28. Hendrey GR, Lewin KF, Nagy J (1993) Control of carbon dioxide in unconfined field plots. In: Schulze E-D, Mooney HA (eds) Design and execution of experiments on CO2 enrichment. Ecosystems Research Report 6. Commission of the European Communities, BrusselsGoogle Scholar
  29. Hendrey GR, Lewin KF, Zolber Z, Evans LS (1992) Controlled enrichment system for experimental fumigation of plants in the field with sulfur dioxide. J Air Waste Manage Assoc 42:1324–1327Google Scholar
  30. Hertstein U, Fangmeier A, Jäger H-J (1996) ESPACE-Wheat (European Stress Physiology and Climate Experiment) project 1: wheat I: objectives, general approach, and first results. J Appl Bot 70:172–180Google Scholar
  31. Hogsett WE, Tingey DT, Hendricks C, Rossi DC (1989) Sensitivity ofwestern conifers to SO2 and seasonal interaction of acid fog and zone. In: Olson RK, Lefohn AS (eds) Effects of air pollution on western forests. Air Pollution Control Association, PittsburghGoogle Scholar
  32. Hogsett WE, Tingey DT, Holmann SR (1985) A programmable exposure control system for determination of the effects of pollutant exposure regimes on plant growth. Atmospheric Environ 19:1135–1145CrossRefGoogle Scholar
  33. Houpis JLJ, Costella MP, Cowles SC (1991) A branch exposure chamber for fumigating ponderosa pine to atmospheric pollution. J Environ Qual 20:467–474CrossRefGoogle Scholar
  34. Irving PM (1983) Acidic deposition effects on vegetation: a review and analysis of methodology. VDI-Berichte 500:215–223Google Scholar
  35. Jacobson JS, Troiano J, Heller L (1985) Stage of development, responses, and recovery of radish plants from episodic exposure to simulated acidic rain. J Exp Bot 36:159–167CrossRefGoogle Scholar
  36. Jäger H-J, Steubing L (1970) Fraktionierte Schwefelbestimmung in Pflanzenmaterial zur Beurteilung einer SO2-Einwirkung. Angew Bot 44:209–221Google Scholar
  37. Jäger H-J, Unsworth M, De Temmermann L, Mathy P (1992) Effects of air pollution on agricultural crops. Air pollution research report 46. Commission of the European Communities, BrusselsGoogle Scholar
  38. Jäger H-J, Weigel H-J (1993) The European open-top chamber network — a basis and framework for studies of the effects of elevated CO2 and its interactions with air pollution. In: Schulze E-D, Mooney HA (eds) Design and execution of experiments on CO2 enrichment. Ecosystems research report 6. Commission of the European Communities, BrusselsGoogle Scholar
  39. Jäger H-J, Weigel H-J, Guderian R, Arndt U, Seufert G (1987) Methodological approaches, part I: experiments with open-top chambers — results, advantages and limitations. In: Mathy P (ed) Air pollution and ecosystems. Reidel, DordrechtGoogle Scholar
  40. Johnston JW, Shriner DS, Abner CH (1986) Design and performance of an exposure system for measuring the response of crops to acid rain and gaseous pollutants in the field. J Air Pollut Control Assoc 36:894–899CrossRefGoogle Scholar
  41. Klein H, Priebe A, Weigel H-J, Jäger H-J (1980) Ökophysiologische Aspekte der Kontamination von Kulturpflanzen mit dem Schwermetall Cadmium. Verh Ges Ökol VIII:481–491Google Scholar
  42. Könnecker G, Aust HJ. Jäger H-J (1987) Der Einfluß säurehaltiger Niederschläge auf die Entwicklung von Erysiphe graminis DC. f. sp. tritici Marchal. Z Pflanzenkrankh Pflanzenschutz 94:58–67Google Scholar
  43. Körner C, Arnone JA (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257:1672–1675CrossRefGoogle Scholar
  44. Krause GHM (1974) Zur Aufnahme von Zink und Cadmium durch oberirdische Pflanzenorgane. Dissertation, Univ BonnGoogle Scholar
  45. Krupa SV, Grünhage L, Jäger H-J, Nosal M, Manning WJ, Legge AH, Hanewald K (1995) Ambient zone (O3) and adverse crop response: a unified view of cause and effect. Environ Pollut 87:119–126CrossRefGoogle Scholar
  46. Kuja A, Jones R, Enyedi A (1986) A mobile rain exclusion canopy system to determine dose-response relationships for crops and forest species. Water Air Soil Pollut 31:307–315CrossRefGoogle Scholar
  47. Lauenroth WK, Preston EM (1984) The effects of So2 on a grassland. Ecol Stud 45. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  48. Laurence JA, MacLean DC, Mandl RH, Schneider RE, Hansen KS (1982) Field tests of a linear gradient for exposure of row crops to SO2 and HF. Water Air Soil Pollut 17:399–407CrossRefGoogle Scholar
  49. Lee JJ, Lewis RA (1978) Zonal air pollution system: design and performance. In: Preston EM, Lewis RA (eds) The bioenvironmental impact of a coal-fired power plant. US Envirommental Protection Agency 600/3-78-021Google Scholar
  50. Lee JJ, Neely GE, Perrigan SC, Grothaus LC (1981) Effects of simulated sulphuric acid rain on yield, growth and foliar injury of several crops. Environ Exp Bot 21:171–185CrossRefGoogle Scholar
  51. Legge AH, Grünhage L, Nosal M, Jäger H-J, Krupa SV (1995) Ambient ozone and adverse crop response: an evaluation of North American and European data as they relate to exposure indices and criticallevels. J Appl Bot 69:192–205Google Scholar
  52. Lipfert FW, Alexander Y, Hendrey GR, Lewin KF, Nagy J (1992) Performance and analysis of the BNL FACE gas injection system. Crit Rev Plant Sci 11:143–163CrossRefGoogle Scholar
  53. Lockyer DR, Cowling DW, Jones LHP (1976) A system for exposing plants to atmospheres containing low concentrations of sulphur dioxide. J Exp Bot 27:397–409CrossRefGoogle Scholar
  54. Lucas PW, Cottam DA, Mansfield TA (1987) A large-scale fumigation system for investigating interactions between air pollution and cold stress on plants. Environ Pollut 43:15–28CrossRefGoogle Scholar
  55. Mandl RH, Laurence JA, Kohut RJ (1989) Development and testing of open-top chambers for exposing large, perennial plants to air pollutants. J Environ Qual 18:534–540CrossRefGoogle Scholar
  56. McLaughlin SB, Schorn VJ, Jones HC (1976) A programmable exposure system for kinetic dose-response studies with air pollutants. J Air Pollut Contr Assoc 26:132–135CrossRefGoogle Scholar
  57. McLeod AR, Fackrell JE, Alexander K (1985) Open-air fumigation of field crops: criteria and design for a new experimental system. Atmospheric Environ 19: 1639–1649CrossRefGoogle Scholar
  58. McLeod Ar, Shaw PJA, Holland MR (1992) The Liphook forest fumigation project: studies of sulphur diox ide and ozone effects on coniferous trees. For Ecol Manag 51:121–127CrossRefGoogle Scholar
  59. Miller JE, Spurgel DG, Muller RN, Smith HJ, Xerikos PB (1980) Open air fumigation system for investigating sulphur dioxide effects on crops. Phytopathol 70:1124–1128CrossRefGoogle Scholar
  60. Mooi IJ, van der Zalm AJA (1985) Research on the effects of higher than ambient concentrations of SO2 and NO2 on vegetation under semi-natural conditions: the developing and testing of a field fumigation system, process description. First Interim Report to the Commission of the European Communities, Contract ENV-677-NL, Research Institute for Plant Protection, Wageningen NLGoogle Scholar
  61. Musselmann RC, McCool PM, Oshima RJ, Reso RR(1986) Field chambers for assessing crop loss from air pollutants. J Environ Qual 15:152–157CrossRefGoogle Scholar
  62. Oechel WC, Riechers G, Lawrence WT, Prudhomme TI, Grulke N, Hastings SJ (1992), CO2 LT’ an automated, null-balance system for studying the effects of elevated CO2 and global change on unmanaged ecosystems. Functional Ecol 6:86–100CrossRefGoogle Scholar
  63. Oshima RJ, Braegelmann PK, Baldwin DW, VanWay V, Taylor OC (1977a) Reduction of tomato fruit size and yield by ozone. J Am Soc Horti Sci 102:298–293Google Scholar
  64. Oshima RJ, Poe M, Braegelmann PK, Baldwin DW, Van Way V (1976) Ozone dosage-crop loss function for alfalfa: a standardized method for assessing crop losses from air pollutants. J Air Pollut Contr Assoc 26:861–865CrossRefGoogle Scholar
  65. Payer HD, Blank LW, Bosch C, Gnatz G, Schmolke W, Schrammel P (1986) Simultaneous exposure of forest trees to pollutants and climatic stress. Water Air Soil Pollut 31:485–491CrossRefGoogle Scholar
  66. Posthumus AC (1978) New results from SO2-fumigations of plants. VDI-Berichte 314:225–230Google Scholar
  67. Reece CF, Krupa SV, Jäger H-J, Roberts SW, Hastings SJ, Oechel WC (1995) Evaluating the effects of elevated levels of atmospheric trace gases on herbs and shrubs: a prototype dual array field exposure system. Environ Pollut 90:25–31CrossRefGoogle Scholar
  68. Reich PB, Amundson RG, Lassoie JP (1982) Reduction in soybean yield after exposure to ozone and sulphur dioxide using a linear gradient exposure technique. Water Air Soil Pollut 17:29–35Google Scholar
  69. Rogers HH, Jeffries HE, Stahel EP, Heck WW, Ripperton LA, Whitherspoon AM (1977) Measuring air pollutant uptake by plants: a direct kinetic approach. J Air Pollut Contr Assoc 27:1192–1197CrossRefGoogle Scholar
  70. Runeckeis VC, Wright EF, White D (1990) A chamberless field exposure system for determining the effects of gaseous air pollutants on crop growth and yield. Environ Pollut 63:61–77CrossRefGoogle Scholar
  71. Scherbatskoy T, Klein RM (1983) Responses of spruce and birch foliage to leaching by acidic mist. J Environ Qual 12:189–195CrossRefGoogle Scholar
  72. Schulze E-D, Mooney HA (1993) Design and execution of experiments on CO2 enrichment. Ecosystems research report 6. Commission of the European Communities, BrusselsGoogle Scholar
  73. Seufert G, Arndt U (1985) Open-top Kammern als Teil eines Konzeptes zur ökosystem aren Untersuchung der neuartigen Waldschäden. Allg Forstzeitsch 40:13–18Google Scholar
  74. Shinn JH, Clegg BR, Stuart ML (1977) A linear gradient chamber for exposing field plants to controlled levels of air pollutants. Lawrence Livermore Laboratory, University of California, UCRL Reprint No 80411Google Scholar
  75. Teskey RO, Dougherty PM, Wiselogel AE (1991) Design and performance of branch chambers suitable for long-term ozone fumigation of foliage in large trees. J Environ Qual 20:591–595CrossRefGoogle Scholar
  76. Troiano J, Jacobson JS, Heller L (1984) Effects of simulated acidic rain applied alone and in combination with ambient rain on growth and yield of field-grown snap bean. Agricult Ecosys Environ 11:161–172CrossRefGoogle Scholar
  77. Van de Geijn SC, Van Veen JA (1993) Implications of increased carbon dioxide levels for carbon input and turnover in soils. Vegetatio 104/105:283–292CrossRefGoogle Scholar
  78. Van Haut H (1972) Test methods to prove phytotoxical pollutants. Environ Pollut 3:123–132CrossRefGoogle Scholar
  79. Wall GW, Kimball BA(1993) Biological data bases derived from free air carbon dio xide enrichment experiments. In: Schulze E-D, Mooney HA (eds) Design and execution of experiments on CO2 enrichment. Ecosystems research report 6. Commission of the Europoean Communities, BrusselsGoogle Scholar
  80. Weigel H-J, Adaros G, Jäger H-J (1987) An open-top chamber study with filtered and non-filtered air to evaluate the effects of air pollutants on crops. Environ Pollut 47:231–244CrossRefGoogle Scholar
  81. Weigel H-J, Jäger H-J (1988) Zur Ökotoxikologie von Luftschadstoffen. II. Aufbau und Funktionsweise einer Expositionanlage aus Open-top-Kammern zur Untersuchung von Immissionswirkungen auf Pflanzen. Landbauforschung Völkenrode 38:182–195Google Scholar

Literatur

  1. Ashmore MR, Thwaites RH, Ainsworth N, Cousins DA, Power SA, Morton AJ (1995) Effects of ozone on calcareous grassland communities. Water Air Soil Pollut 85:1527–1532CrossRefGoogle Scholar
  2. Barbo DN, Chappelka AH, Somers GL, Miller-Goodman MS, Stolte K (1998) Diversity of an early successional plant community as influenced by ozone. New Phytol 138:653–662CrossRefGoogle Scholar
  3. Bennet JP, Resh HM, Runeekles VC (1974) Apparent stimulations on plant growth by air pollutants. Can J Bot 52:35–41CrossRefGoogle Scholar
  4. Bergmann E, Bender J, Weigel H-J (1998) Zur Ozonempfindlichkeit von Wildpflan-zenarten. Verlag Agrarökologie, BernGoogle Scholar
  5. 22.
    BImSch V (1994) Zweiundzwanzigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung zur Änderung der Verordnung über Immissionswerte — 22. BlmSchV) vom 27. Mai 1994. BGBl I:1095Google Scholar
  6. CEC(1993) The European Open-Top Chamber Project: Assessment ofthe effects of air pollutants on agricultural crops. Air pollution research report 48. CEC — Commission of the European Communities, Directorate-General for Science, Research and Development, BrusselsGoogle Scholar
  7. Davis DD, Wood FA (1973a) The influence of environmental factors on the sensitivity of Virginia pine to ozone. Phytopathology 63:371–376CrossRefGoogle Scholar
  8. Davis DD, Wood FA (1973b) The influence of plant age on the sensitivity of Virginia pine to ozone. Phytopathology 63:381–388CrossRefGoogle Scholar
  9. Davison AW, Barnes JD (1998) Effects of ozone on wild plants. New Phytol 139: 135–151CrossRefGoogle Scholar
  10. Davison A, Ashmore M, Bender J, Chappelka A, Weigel H (1999) Critical levels for semi-natural vegetation. In: Fuhrer J, Achermann B (eds) Critical levels for ozone — level II. UN/ECE workshop, Gerzensee, Switzerland, 11–15 April 1999, pp 41–44Google Scholar
  11. De Santis F (1999) New Directions: will a new European vegetation ozone standard be fair to all European Countries. Atmos Environ 33:3873–3874CrossRefGoogle Scholar
  12. EAG — Environmental Assessment Group of EUROTRAC (1998) Policy-related tasks for EUROTRAC-2. EUROTRAC Newslett 20:33–37Google Scholar
  13. EPA — US Environmental Protection Agency (1996) Air quality criteria for ozone and related photochemical oxidants, vol II. EPA/600/P-93/004bF. US Environmental Protection Agency, Office of Research and Development, Washington, DCGoogle Scholar
  14. EU (1992) Richtlinie 92/72/EWG des Rates vom 21. September 1992 über die Luft-verschmutzung durch Ozon. Amtsblatt der Europ äischen Gemeinschaften Nr. L 297:1–7Google Scholar
  15. EU (1996) Richtlinie 96/62/EG des Rates vom 27. September 1996 über die Beurteilung und die Kontrolle der Luftqualität. Amtsblatt der Europäischen Gemeinschaften Nr. L 296:55–63Google Scholar
  16. EU (1999) Richtlinie 1999/30/EG des Rates vom 22. April 1999 über Grenzwerte für Schwefeldioxid, Stickstoffdioxid und Stickstoffoxide, Partikel und Blei in der Luft. Amtsblatt der Europäischen Gemeinschaften L 163:41–60Google Scholar
  17. Evans LS (1973) Bean leaf growth response to moderate ozone levels. Environ Pollut 4:17–26CrossRefGoogle Scholar
  18. Evans PA, Ashmore MR (1992) The effects of ambient air on a semi-natural grassland community. Agr Ecosyst Environ 38:91–97CrossRefGoogle Scholar
  19. Federal Register (1997) Part V. Environmental Protection Agency, 40 CFR Part 50, National Ambient Air Quality Standards for Ozone; Final Rule. Rules and Regulations. Federal Register 62, no 138, Friday, July 18, 1997:38857–38896Google Scholar
  20. Fowler D, Cape JN (1982) Air pollutants in agriculture and horticulture. In: Unsworth MH, Ormrod DP (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworth Scientific, London, pp 3–26Google Scholar
  21. Fuhrer J (1994) The criticallevel for ozone to protect agricultural crops-an assessment of data from European open-top chamber experiments. In: Fuhrer J, Achermann B(eds) critical levels for ozone — a UN-ECE workshop report. FAC Schriftenreihe (Eidgenössische Forschungsanstalt für Agrikulturchemie und Umwelthygiene, Bern) 16:42–57Google Scholar
  22. Fuhrer J (1996) The criticallevel for effects of ozone on crops, and the transfer to mapping. In: Kärenlampi L, Skärby L (eds) critical levels for ozone in Europe: testing and finalizing the concepts. UN-ECE workshop report. University of Kuopio, Department of Ecology and Environmental Science, Kuopio, pp 27–43Google Scholar
  23. Fuhrer J, Achermann B (1994) Critical levels for ozone — a UN-ECE workshop report. FAC Schriftenreihe (Eidgenössische Forschungsanstalt für Agrikultur-chemie und Umwelthygiene, Bern) 16Google Scholar
  24. Fuhrer J, Achermann B (1999) Critical levels for ozone — level II. Environmental Documentation 115. Swiss Agency for the Environment, Forests and Landscape, Bern, SwitzerlandGoogle Scholar
  25. Fuhrer J, Skärby L, Ashmore MR (1997) Critical levels for ozone effects on vegetation in Europe. Environ Pollut 97:91–106CrossRefGoogle Scholar
  26. Grünhage L, Haenel H-D (2000) WINDEP — Worksheet-INtegrated Deposition Estimation Programme. In: KRdL — Kommission Reinhaltung der Luft im VDI und DIN (Hrsg) Troposphärisches Ozon. Eine kritische Bestandsaufnahme über Ursache, Wirkung und Abhilfemaßnahmen. Schriftenreihe der KRdL, Bd 32, Düsseldorf, S 157–173Google Scholar
  27. Grünhage L, Jäger H-J, Haenel H-D, Hanewald K, Krupa S (1997) PLATIN (PLant-ATmosphere INteraction) II: co-occurrence of high ambient ozone concentrations and factors limiting plant absorbed dose. Environ Pollut 98:51–60CrossRefGoogle Scholar
  28. Grünhage L, Jäger H-J, Haenel H-D, Löpmeier F-J, Hanewald K (1999) The Europe-an critical levels for ozone: improving their usage. Environ Pollut 105:163–173CrossRefGoogle Scholar
  29. Grünhage L, Haenel H-D, Jäger H-J (2000a) The exchange of ozone between vegetation and atmosphere: micrometeorological measurement techniques and models. Environ Pollut 109:373–392CrossRefGoogle Scholar
  30. Grünhage L, Jäger H-J, Köllner B, Krause G (2000b) Richt-und Grenzwerte für Ozon zum Schutz der Vegetation. In: KRdL— Kommission Reinhaltung der Luft im VDI und DIN (Hrsg) Troposphärisches Ozon. Eine kritische Bestandsauf-nahme über Ursache, Wirkung und Abhilfemaßnahmen. Schriftenreihe der KRdL, Bd 32, Düsseldorf, S 137–156Google Scholar
  31. Grünhage L, Krause GHM, Köllner B, Bender J, Weigel H-J, Jäger H-J, Guderian R (2001) A new flux-orientated concept to derive critical levels for ozone to protect vegetation. Environ Pollut 111:335–362CrossRefGoogle Scholar
  32. Guderian R (1970) Untersuchungen über quantitative Beziehungen zwischen dem Schwefelgehalt von Pflanzen und dem Schwefeldioxidgehalt der Luft. H. Teil.Z Pflanzenkr Pflanzensch 77:289–308Google Scholar
  33. Guderian R (1977) Air pollution. Phytotoxicity of acidic gases and its significance in air pollution control. Ecol Stud 22. Springer, Berlin Heidelberg NewYorkGoogle Scholar
  34. Guderian R, Stratmann H (1962) Freilandversuche zur Ermittlung von Schwefeldi-oxydwirkungen auf die Vegetation. I. Teil: Übersicht zur Versuchsmethodik und Versuchsauswertung. Forschungsberichte des Landes Nordrhein-Westfalen Nr 1118. Westdeutscher Verlag, KölnGoogle Scholar
  35. Guderian R, Stratmann H (1968) Freilandversuche zur Ermittlung von Schwefeldi-oxydwirkungen auf die Vegetation. Teil III: Grenzwerte schädlicher SO2-Immis-sionen für Obst-und Forstkulturen sowie für landwirtschaftliche und gärtnerische Pflanzenarten. Forschungsberichte des Landes Nordrhein-Westfalen Nr 1920. Westdeutscher Verlag, KölnGoogle Scholar
  36. Guderian R, Tingey DT, Rabe R (1985) Effects of photochemical oxidants and plants. In: Guderian R (ed) Air pollution by photochemical oxidant. Ecological studies, vol 52. Springer-Verlag, Berlin Heidelberg NewYork, pp 127–346CrossRefGoogle Scholar
  37. Guderian R, Tingey DT, Rabe R (1983) Wirkungen von Photooxidantien auf Pflanzen. In: Umweltbundesamt (Hrsg) Luftqualitätskriterien für photochemische Oxidantien. Erich Schmidt Verlag, Berlin, S 205–427Google Scholar
  38. Guderian R, van Haut H, Stratmann H (1960) Probleme der Erfassung und Beurteilung von Wirkungen gasförmiger Luftverunreinigungen auf die Vegetation. Z Pflanzenkrh (Pflanzenpathol) Pflanzenschutz 67:257–264Google Scholar
  39. Guderian R, van Haut H, Stratmann H (1969) Experimentelle Untersuchungen über pflanzenschädigende Fluorwasserstoff-Konzentrationen. Forschungs-berichte des Landes Nordrhein-Westfalen 2017. Westdeutscher Verlag, KölnGoogle Scholar
  40. Heck WW, Brandt CS (1977) Effects on vegetation: native, crops, forests. In: Stern AS (ed) Air pollution, 3rd edn, vol II. The effects of air pollution. Academic Press, NewYork, pp 157–229Google Scholar
  41. Heck WW, Tingey DT (1971) Ozone, time-concentration model to predict acute foliar injury. In: Anonymous Proceedings 2nd International Clean Air Congress, Washington, DC, pp 249–355Google Scholar
  42. Heck WW, Dunning JA, Hindawi IJ (1966) Ozone: nonlinear relation of dose and injury in plants. Science 151:577–578CrossRefGoogle Scholar
  43. Heck WW, Furiness CS, Cowling EB, Sims CK (1998) Effects of ozone on crop, forest, and natural ecosystems: assessment of research needs. Environ Manager October 1998:11–22Google Scholar
  44. Hicks BB, Baldocchi DD, Meyers TP, Hosker RP, Matt DR (1987) Apreliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330CrossRefGoogle Scholar
  45. Hogsett WE, Herstrom A, Laurence JA, Weber JE, Lee EH, Tingey D (1995) An approach for characterizing tropospheric ozone risk to forests. In: Lee SD, Schneider T (eds) Proceedings of the 4th US/Dutch international symposium: comparative risk analysis and priority setting for air pollution issues. Air and Waste Management Association, Pittsburgh, pp 119–145Google Scholar
  46. ICP-Crops Coordination Centre (1997) Progress report for the ICP-Crops (International Cooperative Programme on effects of air pollution and other stresses on crops and non-wood plants) — August 1996 to August 1997. ICP-Crops Coordination Centre, The Nottingham Trent University, NottinghamGoogle Scholar
  47. Jacobson JS (1977a) The effects of photochemical oxidants on vegetation. In: Verein Deutscher Ingenieure (Hrsg) Ozon und Begleitsubstanzen im photochemischen Smog. VDI Berichte 270, Düsseldorf, S 163–173Google Scholar
  48. Jacobson JS (1977b) Plants as indicators of photochemical oxidants in the USA.In: Verein Deutscher Ingenieure (Hrsg) Ozon und Begleitsub stanzen im photochemischen Smog. VDI Berichte 270, Düsseldorf, S 191–196Google Scholar
  49. Jäger HJ, Unsworth M, De Temmerman L, Mathy P (1993) Effects of air pollution on agricultural crops in Europe: results of the European Open-Top Chambers Project. Air pollution research report 46. CEC — Commission of the European Communities, Directorate-General for Seience, Research and Development, BrusselsGoogle Scholar
  50. Katz M (1949) Sulfur dioxide in the atmosphere and it’s relation to plant life. Ind Eng Chem 41:2450–2465CrossRefGoogle Scholar
  51. Kärenlampi L, Skärby L (1996) Critical levels for ozone in Europe: testing and finalizing the concepts. UN-ECE workshop report. University of Kuopio, Department of Ecology and Environmental Science, KuopioGoogle Scholar
  52. Kress LW, Miller JE, Smith HJ (1985) Impact of ozone on winter wheat yield. Environ Exp Bot 25:211–228CrossRefGoogle Scholar
  53. Larsen RI, Heck WW (1976) An air quality data analysis system for interrelating effects, standards, and needed source reductions, part 3.Vegetation injury. J Air Pollut Contr Assoc 25:325–333CrossRefGoogle Scholar
  54. Lefohn AS, Runeekles VC (1987) Establishing standards to protect vegetation ozone exposure/dose considerations. Atmos Environ 21:561–568CrossRefGoogle Scholar
  55. Linzon SN, Heck WW, Macdowall FDH (1975) Effects of photochemical oxidants on vegetation. In: National Research Council — Subcommittee on Air (ed) Photo-chemical air pollution: formation, transport and effects. National Research Council of Canada, NRC Assoeiate Committee on Seientific Criteria for the Environmental Quality, Ottawa, pp 89–142Google Scholar
  56. Lumis GP, Ormrod DP (1978) Effects of ozone on growth of four woody ornamental plants. Can J Plant Sci 58:769–773CrossRefGoogle Scholar
  57. McCune DC (1969) On the establishment of air quality criteria, with reference to the effects of atmospheric fluorine on vegetation. Air Quality Monograph 69-3. American Petroleum Institute, NewYorkGoogle Scholar
  58. Miller PR, Parmeter JR, Flick BH, Martinez CW (1969) Ozone dosage response of ponderosa pine seedlings. J Air Pollut Contr Assoc 19:435–438CrossRefGoogle Scholar
  59. Nagel H-D, Gregor H-D (1999) Ökologische Belastungsgrenzen — Critical Loads und Levels. Ein internationales Konzept für die Luftreinhaltepolitik. Springer, Berlin Heidelberg New YorkGoogle Scholar
  60. O’Gara PJ (1922) Sulfur dioxide and fume problems and their solution. Quoted in: Olsen JC „Fourteenth semiannual meeting of the American Institute of Chernical Engineers“. J Industr Eng Chem 14:744–745Google Scholar
  61. Pöch G (2000) Naturwissenschaftliche-medizinische Grundlagen. In: Streffer C et al. (Hrsg) Umweltstandards. Kombinierte Expositionen und ihre Auswirkungen auf den Menschen und seine Umwelt. (Wissenschaftsethik und Technikfol-genbeurteilung. Schriftenreihe der Europäischen Akademie zur Erforschung von Folgen wissenschaftlich-technischer Entwicklungen Bad Neuenahr-Ahr-weiler GmbH, Bd 5). Springer, Berlin Heidelberg NewYork, S 46–106Google Scholar
  62. Pütz M (1993) 30 Jahre Luftqualitätsüberwachung. LIS Berichte (Schriftenreihe der Landesanstalt für Immissionsschutz Nordrhein-Westfalen, Essen) 110:35–38Google Scholar
  63. Rajput CBS, Ormrod DP (1986) Stimulation of plant growth in pumpkin by ozone. HortSeience 21:498–499Google Scholar
  64. Reinert RA, Nelson PV (1979) Sensitivity and growth of twelve Elatior begonia cultivars to ozone. HortScience 14:747–748Google Scholar
  65. Sanders GE, Robinson AD, Geissler PA, Colls JJ (1992) Yield stimulation of a commonly grown cultivar of Phasealus vulgaris L. at near-ambient ozone concentrations. New Phytol 122:63–70CrossRefGoogle Scholar
  66. Schmitz-Dumont W (1896) Versuche über die Einwirkung von Fluorwasserstoff in der Atmosphäre auf Pflanzen. Tharander Forstl Jahrb 46:50–57Google Scholar
  67. Stöckhardt A (1871) Untersuchungen über die schädliche Einwirkung des Hütten-und Steinkohlenrauches auf das Wachsthum der Pflanzen, insbesondere der Fichte und Tanne. Tharander Forstl Jahrb 21:218–254Google Scholar
  68. TA Luft (1986) Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissions-schutzgesetz (Technische Anleitung zur Reinhaltung der Luft — TA Luft), vom 28. August 1974 (GMBl.S. 95), ersetzt durch die Neufassung vom 27. Febr 1986 (GMBl.S. 95), mit Berichtigung vom 4. April 1986 (GMBl.S 202)Google Scholar
  69. Thomas MD, Hill GR (1935) Absorption of sulphur dioxide by alfalfa and its relation to leaf injury. Plant Physiol l0:291–307CrossRefGoogle Scholar
  70. ]Theophrastus von Hohenheim gen. Paracelsus (1537/38): Defensiones septern. Die verantwortung uber ezlich verunglimpfung seiner misgünner. Zitiert in: Sud-hoff K(1928) Theophrast von Hohenheim gen. Paracelsus — Sämtliche Werke. 1. Abteilung: Medizinische naturwissenschaftliche und philosophische Schriften. Oldenbourg, München, S 125–160Google Scholar
  71. ]Umweltbundesamt (1996) Manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded. Texte 71/96. Umweltbundesamt, BerlinGoogle Scholar
  72. ]UN-ECE (1988) ECE critical levels workshop report. Bad Harzburg, Germany, pp 14–18 March 1988. Final draft report. United Nations — Economic Commission for EuropeGoogle Scholar
  73. ]UN-ECE (1996) 1979 Convention on Leng-Range Transboundary Air Pollution and its protocols. United Nations — Economic Commission for Europe, NewYorkGoogle Scholar
  74. van Haut H (1961) Die Analyse von Schwefeldioxydwirkungen auf Pflanzen im Laboratoriumsversuch. Staub 21:52–56Google Scholar
  75. ]VDI 2309 Bl 1 (1983) Ermittlung von Maximalen Immissions-Werten. Grundlagen — Determination of Maximum Immission Values. Fundamentals. Beuth, BerlinGoogle Scholar
  76. ]VDI 2310 Bl 6E (2000) Maximale Immissions-Werte zum Schutz der Vegetation. Maximale Immissions-Konzentrationen für Ozon. Beuth, BerlinGoogle Scholar
  77. von Schroeder J, Reuss C (1883) Die Beschädigung der Vegetation durch Rauch und die Oberharzer Hüttenrauchschäden. Parey, BerlinGoogle Scholar
  78. Wentzel KF (1962) Konkrete Schadwirkungen der Luftverunreinigung in der Ruhrgebietslandschaft. Natur und Landschaft 37:118–124Google Scholar
  79. ]WHO — World Health Organization — Regional Office for Europe (1996) Update and revision of the WHO Air Quality Guidelines for Europe. Ecotoxic effects. Ozone effects on vegetation. Final draft, December 1996. European Centre for the Environment and Health, Bilthoven, The NetherlandsGoogle Scholar
  80. Wislicenus H (1901) Zur Beurteilung und Abwehr von Rauchsch äden. Z Angew Chem 28:689–712CrossRefGoogle Scholar
  81. Zahn R (1961) Wirkungen von Schwefeldioxyd auf die Vegetation, Ergebnisse aus Begasungsversuchen. Staub 21:56–60Google Scholar
  82. Zahn R (1963) Untersuchungen über die Bedeutung kontinuierlicher und intermittierender Schwefeldioxideinwirkungen für die Pflanzenreaktion. Staub 23: 343–352Google Scholar

Literatur

  1. Adaros G, Weigel HJ, Jäger HJ (1991a). Single and interactive effects oflow levels of O3, SO2 and NO2 on the growth and yield of spring rape. Environ Pollut 72:-269–286CrossRefGoogle Scholar
  2. Adaros G, Weigel HJ, Jäger HJ (1991b) Concurrent exposure to SO2 and/or NO2 alters growth and yield responses of wheat and barley to low concentrations of O3. New Phytol 118:581–591CrossRefGoogle Scholar
  3. Allen LH (1990) Plant responses to rising carbon dioxide and potential interactions with air pollutants. J Environ Qual 19:15–34CrossRefGoogle Scholar
  4. Amundson RG, Kohut RJ, Schoettle AW, Raba RM, Reich PB (1987) Correlative reductions in whole-plant photosynthesis and yield of winter wheat caused by ozone. Phytopathology 77:75–79CrossRefGoogle Scholar
  5. Ashenden TW, Mansfield TA (1978) Extreme pollution sensitivity of grasses when SO2 and NO2 are present in the atmosphere together. Nature 273:-142–143CrossRefGoogle Scholar
  6. Ashmore MR, Önal M (1984) Modification by sulphur dioxide of the responses of Hordeum vulgare to ozone. Environ Pollut 36:31–43CrossRefGoogle Scholar
  7. Balaguer L, Barnes JD, Panicucci A, Borland AM (1995). Production and utilization of assimilates in wheat (Triticum aestivum L.) leaves exposed to elevated CO2 and/or O3. New Phytol 129:557–568CrossRefGoogle Scholar
  8. Barnes JD, pfirrmann T (1992) The influence of CO2 and O3 singly and in combination, on gas exchange, growth and nutrient status of radish (Raphanus sativus L.). New Phytol 121:403–412CrossRefGoogle Scholar
  9. Barnes JD, Wellburn AR (1998) Air pollutant combinations. In: DeKok LJ, Stulen I (eds) Responses of plant metabolism to air pollution and global change. Backhuys, Leiden, pp 147–164Google Scholar
  10. Barnes JD, Ollerenshaw JH, Whitfield C (1995) Effects of elevated CO2 and/or O3 on growth, development and physiology of wheat (Triticum aestivum L.). Global Change Biol l:129–142CrossRefGoogle Scholar
  11. Barnes JD, Bender J, Lyons T, Borland A (1999) Natural and man-made selection for air pollution resistance. J Exp Bot 50:1423–1435Google Scholar
  12. Beckerson DW, Hofstra G (1979) Response of leaf diffusive resistance of radish, cucumber, and soybean to O3 and SO2 singly or in combination. Atmos Environ 13:1263–1268CrossRefGoogle Scholar
  13. Bender J, Weigel HJ (1993) Crop responses to mixtures of air pollutants. In: Jäger HJ, Unsworth M, DeTemmerman L, Mathy P (eds.): Effects of air pollution on agricultural crops in Europe. Air Pollution Research Report 46, pp. 445–453Google Scholar
  14. Bender J, Weigel HJ (1994) The role of other pollutants in modifying plant responses to ozone. In: Fuhrer J, Achermann B (eds) critical levels for ozone. Schriftenreihe der FAC Liebefeld 16, pp 240–247Google Scholar
  15. Bender J, Jäger HJ, Schweizer B, Seufert G, Arndt U (1989). Leng-term effects of air pollutants on forest trees in open-top chambers. II. Investigation of physiological and biochemical effects. In: Bucher JB, Bucher-Wallin I (eds) Air pollution and forest decline. Interlaken, Switzerland, pp 167–172Google Scholar
  16. Bender J, Weigel HJ, Jäger HJ (1991) Response of nitrogen metabolism in beans (Phaseolus vulgaris L.) after exposure to ozone and nitrogen dioxide, alone and in sequence. New PhytoI 119:261–267CrossRefGoogle Scholar
  17. Bender J, Hertstein U, Black CR (1999) Growth and yield responses of spring wheat to increasing carbon dioxide, ozone and physiological stresses: a statistical analysis of ‚ESPACE‘-wheat results. Eur J Agron 10:185–195CrossRefGoogle Scholar
  18. Burian K (1976) Kombinationswirkungen von Umweltgiften auf pflanzliche Organismen. Umschau 76:351–352Google Scholar
  19. Chappelka AH, Chevone BI, Seiler JR (1988) Growth and physiological responses of yellow-poplar seedlings exposed to ozone and simulated acid rain. Environ Pollut 49:1–18CrossRefGoogle Scholar
  20. Dämmgen U, Weigel HJ (1998) Trends in atmospheric composition (nutrients and pollutants) and their interaction with agroecosystems. In: El Bassam, N, Behl R, Prochnow B (eds) Sustainable agriculture for food, energy and industry: strategies towards achievement. James and James, pp 85–93Google Scholar
  21. Darrall NM (1989) The effect of air pollutants on physiological processes in plants. Plant Cell Environ 12:1–30CrossRefGoogle Scholar
  22. Davis DD, Skelly JM (1992). Growth response of four species of eastern hardwood tree seedlings exposed to ozone, acidic precipitation, and sulfur dioxide. J Air Waste Manage Assoc 42:309–311CrossRefGoogle Scholar
  23. Fangmeier A (1989) Effects of open-top fumigations with S02’ N02and ozone on the native herb layer of a beech forest. Environ Exp Bot 29:199–213CrossRefGoogle Scholar
  24. Feron VJ, Cassee FR, Graten JP (1998) Toxicology of chemical mixtures: International perspectives. Environ Health Perspect 106:1281–1289CrossRefGoogle Scholar
  25. Fiscus EI, Reid CD, Miller JE, Heagle AS (1997) Elevated CO2 reduces O3 flux and O3-induced yield losses in soybeans: possible implications for elevated CO2 studies. J Exp Bot 48:307–313CrossRefGoogle Scholar
  26. Freer-Smith PH (1984) The responses of six broadleaved trees during long-term exposure to SO2 and NO2. New Phytol 97:49–61CrossRefGoogle Scholar
  27. Goodyear SN, Ormrod DP (1988) Tomato response to concurrent and sequential NO2 and O3 exposures. Environ Pollut 51:315–326CrossRefGoogle Scholar
  28. Guderian R, Tingey DT (1987) Notwendigkeit und Ableitung von Grenzwerten für Stickoxide. Umweltbundesamt, Berichte 1/87. Erich Schmidt Verlag, BerlinGoogle Scholar
  29. Guderian R, Bücker J (2000) Quantitative Zusammenhänge zwischen Mischim-missionen und Wirkungen auf Pflanzen. In: Streffer C et al (Hrsg) Umweltstandards. Kombinierte Expositionen und ihre Auswirkungen auf den Menschen und seine Umwelt. Springer-Verlag, Berlin Heidelberg New York, pp 251–308Google Scholar
  30. Guderian R, Wienhaus O (1997) „Neuartige Waldschäden“ und Luftverunreinigungen. Allg Fortstz/DerWald 16:891–895Google Scholar
  31. Heagle AS, Miller JE, Sherill DE, Rawlings JO (1993) Effects of ozone and carbon dioxide mixtures on two clones of white clover. New Phytol 123:751–762CrossRefGoogle Scholar
  32. Hellmuth M, Weigel HJ, Jäger HJ (1990) Ertrags-und Qualitätsveränderungen bei Welschem Weidelgras (Lolium multiflorum) unter Einzel-und Kombinations-begasung mit den Schadstoffen Ozon und Schwefeldioxid. VDLUFA-Schriftenreihe 32:129–134Google Scholar
  33. Hudak C, Bender J, Weigel HJ, Miller JE (1999) Interactive effects of elevated CO2, O3, and soil water deficit on spring wheat (Triticum aestivum L. cv. Nandu). Agronomie 19:677–687CrossRefGoogle Scholar
  34. Irving PM, Kress LW, Prepechjal W, Smith HJ (1988) Studies on the interaction of ozone with sulfur dioxide on soybeans and corn. US Environmental Protection Agency, Argonne National Laboratory, Technical report no ANL-88-31Google Scholar
  35. Ito O, Okano K, Totsuka T (1984) Effects of NO2 and O3 alone and in combination on kidney bean plants: partitioning of assimilates and root activities. J Exp Bot 36:652–662CrossRefGoogle Scholar
  36. Jäger HJ, Weigel HJ, Grünhage L (1986) Physiologische und biochemische Aspekte der Wirkung von Immissionen auf Waldbäume. Eur J For Pathol 16:98–109CrossRefGoogle Scholar
  37. Jäger HJ, Unsworth M, De Temmerman L, Mathy P (eds) (1993) Effects of air pollution on agricultural crops in Europe. Air Poll. Research Report 46, BrusselsGoogle Scholar
  38. Jensen KF, Dochinger LS (1989) Response of eastern hardwood species to ozone, sulfur dioxide and acid precipitation. JAPCA 39:852–855CrossRefGoogle Scholar
  39. Klumpp A, Küppers K, Guderian R (1989) Nitrate reductase activity of needles of Norway spruce fumigated with different mixtures of ozone, sulphur dioxide, and nitrogen dioxide. Environ Pollut 58:261–271CrossRefGoogle Scholar
  40. Kohut RJ (1985) The effects of SO2 and O3 on plants. In: Winner WE, Mooney HA, Goldstein RA (eds) Sulfur dioxide and vegetation. Stanford University Press, Stanford, pp 296–312Google Scholar
  41. Kohut RJ, Amundson RG, Laurence JA Colavito L, Van Leuken P, King P (1987) Effects of ozone and sulfur dioxide on yield of winter wheat. Phytopathology 77:71–74CrossRefGoogle Scholar
  42. Kress LW, Miller JE, Smith HJ, Rawlings JO (1986) Impact of ozone and sulphur dioxide on soybean yield. Environ Pollut 41:105–123CrossRefGoogle Scholar
  43. Küppers K, Boomers J, Hestermann C, Hanstein S, Guderian K (1994) Reaction of forest trees to different exposure profiles of ozone-dominated air pollutant mixtures. In: Fuhrer J, Achermann B (eds) Critical levels for ozone. Schriften-reihe der FAC Liebefeld 16, pp 98–110Google Scholar
  44. Mansfield TA, McCune DC (1988) Problems of crop loss assessment when there is exposure to two or more gaseous pollutants. In: Heck WW, Taylor OC, Tingey DT (eds) Assessment of crop loss from air pollutants. Elsevier Applied Science, London, pp 317–344CrossRefGoogle Scholar
  45. McLeod AR, Skeffington RA (1995) The Liphook Forest fumigation project: an overview. Plant Cell Environ 18:327–335CrossRefGoogle Scholar
  46. McKee IF, Bullimore JF, Long SP (1997) Will elevated CO2 concentrations protect the yield of wheat from O3 damage? Plant Cell Environ 20:77–84CrossRefGoogle Scholar
  47. Menser HA, Heggestad HE (1966) Ozone and sulfur dioxide synergism: injury to tobacco plants. Science 153:424–425CrossRefGoogle Scholar
  48. Mudd JB (1996) Biochemical basis for the toxicity of ozone. In: Yunus M, Iqbal M (eds) Plant response to air pollution. Wiley, London, pp 267–283Google Scholar
  49. Mulchi CL, Slaughter L, Saleem M, Lee EH, Pausch R, Rowland R (1992) Growth and physiological characteristics of soybean in open-top chambers in response to ozone and increased atmospheric carbon dioxide. Agric Ecosyst Environ 38:107–118CrossRefGoogle Scholar
  50. Mulholland BJ, Craigon J, Black CR, Colls JJ, Atherton J, Landon G (1997) Impact of elevated atmospheric CO2 and O3 on gas exchange and chlorophyll content in spring wheat (Triticum aestivum L.). J Exp Bot 48:1853–1863Google Scholar
  51. Murray F, Wilson S, Monk R (1992) NO2 and SO2 mixtures stimulate barley grain production but depress clover growth. Environ Exp Bot 32:185–192CrossRefGoogle Scholar
  52. Murray F, Wilson S, Samaraweera S (1994) NO2 increases wheat grain yield even in the presence of SO2 Agric Ecosyst Environ 48:115–123CrossRefGoogle Scholar
  53. Olszyk DM, Tibbits TW (1981) Stomatal response and leaf injury of Pisum sativum L. with SO2 and O3 exposures: I. Influence of pollutant level and leaf maturity. Plant Physiol 67:539–544CrossRefGoogle Scholar
  54. Ormrod DP (1982) Air pollutant interactions in mixtures. In: Unsworth MH, Orrnrod DP (eds) Effects of gaseous air pollutants in agriculture and horticulture. Butterworths, London, pp 307–311Google Scholar
  55. Oshima RJ, Bennett JP (1979) Experimental design and analysis. In: Heck WW, Krupa SV, Linzon SN (eds) Handbook of methodology for the assessment of air pollution effects on vegetation. Air PoIl Control Assoc, Pittsburgh, pp 4–122Google Scholar
  56. Polle A, Pell EJ (1999) Role of carbon dioxide in modifying the plant response to ozone. In: Luo Y, Mooney HA (eds) Carbon dioxide and environmental stress. Academic Press, San Diego, pp 193–213CrossRefGoogle Scholar
  57. Rao MV, HaIe BV, Ormrod DP (1995) Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide. Role of antioxidant enzymes. Plant Physiol 109:421–432Google Scholar
  58. Reinert RA (1984) Plant response to air pollutant mixtures. Ann Rev Phytopathol 22:421–442CrossRefGoogle Scholar
  59. Reinert RA, Gray TN (1981) The response of radish to nitrogen dioxide, sulfur dioxide, and ozone, alone and in combination. J Environ Qual 10:240–243CrossRefGoogle Scholar
  60. Rennenberg H, Herschbach C (1996) Responses of plants to atmospheric sulphur. In: Yunus M, Iqbal M (eds) Plant response to air pollution. Wiley, London, pp 285–294Google Scholar
  61. Runeckles VC (1984). Impact of air pollutant combinations on plants. In: Treshow M (ed) Air pollution and plant life. Wiley, NewYork, pp 239–285Google Scholar
  62. Runeckles VC, Palmer K (1987) Pretreatment with nitrogen dioxide modifies plant response to ozone. Atmos Environ 21:717–719CrossRefGoogle Scholar
  63. Runeckles VC, Krupa SV (1994) The impact of UV-B radiation and ozone on terrestrial vegetation. Environ Pollut 83:191–213CrossRefGoogle Scholar
  64. Sanders JS, Reinert RA (1982) Screening azalea cultivars for sensitivity to nitrogen dioxide, sulfur dioxide, and ozone alone and in mixtures. J Am Soc Hortic Sci 107:87–90Google Scholar
  65. Segschneider HJ (1995) Auswirkungen atmosphärischer Stickoxide (NOx) auf den pflanzlichen Stoffwechsel: eine Literaturübersicht. Angew Bot 69:60–85Google Scholar
  66. Seufert G, Arndt U, Jäger HJ, Bender J (1989) Long-term effects of air pollutants on forest trees in open-top chambers. I. Experimental approach and results on mineral cycling. In: Bucher JB, Bucher-Wallin I (eds) Air pollution and forest deeline. Interlaken, Switzerland, pp 159–165Google Scholar
  67. Shriner DS, Heck WW, McLaughlin SB, Johnson DW, Irving PM, Joslin JD, Peterson CE (1991) Response of vegetation to atmospheric deposition and air pollution. In: Irving PM (ed) Acidic deposition: state of science and technology. The US National Acid Precipitation Assessment Program, Washington, DCGoogle Scholar
  68. Streffer C, Bücker J, Cansier A, Cansier D, Gethmann CF, Guderian R, Hanekamp G, Henschler D, Pöche G, Rehbinder E, Renn 0, Slesina M, Wuttke K (2000) Umweltstandards — Kombinierte Expositionen und ihre Auswirkungen auf den Mernschen und seine Umwelt. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  69. Suter G (Ed.) (1993). Ecological risk assessment. Lewis Publishers, Chelsea, MIGoogle Scholar
  70. ]USEPA (US Environmental Protection Agency) (1984) A review and assessment of the effects of pollutant mixtures on vegetation — research recommendations, EPA-600/3-84. US Environmental Protection Agency. Corvallis, OregonGoogle Scholar
  71. ]USEPA (US Environmental Protection Agency) (1996) Air quality criteria for ozone and related photochemical oxidants, vol II. EPA/600/P-93/004bF. US Environmental Protection Agency, Office of Research and Development, Washington, DCGoogle Scholar
  72. Wellburn AR (1990) Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol 115:395–429CrossRefGoogle Scholar
  73. Wellburn AR (1994) Air pollution and elimate change. The biological impact. Longman Scientific and Technical, EssexGoogle Scholar
  74. Wellburn AR, Higginson C, Robinson D, Walmsley C (1981) Biochemical explanation of more than additive inhibitory effects of low atmospheric levels of sulfur dioxide plus nitrogen dioxide upon plants. New Phytol 88:223–237CrossRefGoogle Scholar

Literatur

  1. ]13. BImSchV (1983) Dreizehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über Großfeuerungsanlagen-13. BImSchV) vom 22. Juni 1983. BGBl I: 719Google Scholar
  2. ]3. BlmSchV (1975/1994) Dritte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über Schwefelgehalt von leichtem Heizöl und Dieselkraftstoff — 3. BImSchV) vom 15. Januar 1975 (BGBl. I S. 264) zuletzt geändert am 26.9.1994. BGBl I: 2640Google Scholar
  3. Ács F (1994) A coupled soil-vegetation scheme: description, parameters, validation, and sensitivity studies. J Appl Meteorol 33:268–284CrossRefGoogle Scholar
  4. Amthor JS, Goulden ML, Munger JW, Wofsy SC (1994) Testing a mechanistic model of forest-canopy mass and energy exchange using eddy correlation: carbon dioxide and ozone uptake by a mixed oak-maple stand. Aust J Plant Physiol 21:623–651CrossRefGoogle Scholar
  5. Baldocchi D (1988) A multi-layer model for estimating sulfur dioxide deposition to a deciduous oak forest canopy. Atmos Environ 22:869–884CrossRefGoogle Scholar
  6. Baldocchi DD, Harley PC (1995) Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II. Model testing and application. Plant Cell Environ 18:1157–1173CrossRefGoogle Scholar
  7. Baldocchi DD, Hicks BB, Camara P (1987) A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos Environ 21:91–101CrossRefGoogle Scholar
  8. Braden H (1995) The model AMBETI. A detailed description of a Soil-Plant-Atmosphere model. Ber Dtsch Wetterdienst Nr, 195Google Scholar
  9. Braud I, Dantas-Antonio AC, Vauclin M, Thony JL, Ruelle P (1995) A simple soil-plant-atmosphere transfer model (SiSPAT): development and field verification. J Hydrol 166:231–250CrossRefGoogle Scholar
  10. Brutsaert W (1979) Heat and mass transfer to and from surfaces with dense vegetation or similar permeable roughness. Bound-Lay Meteorol 16:365–388CrossRefGoogle Scholar
  11. Brutsaert W (1984) Evaporation into the atmosphere, 2nd edn. Reidel, DordrechtGoogle Scholar
  12. Bugter RJF, Tonneijck AEG (1990) Ziehtbare beschadiging bij indicatorplanten in relatie tot ozon en zwaveldioxide. Rapport nr. R-89-10. Centre for Agrobiological Research, Institute for Plant Protection, WageningenGoogle Scholar
  13. Cassardo C, Ji JJ, Longhetto A (1995) A study of the performance of aland surface pro cess model (LSPM). Bound-Lay Meteorol 72:87–121CrossRefGoogle Scholar
  14. Chan WH, Lusis MA, Stevens RDS, Vet RJ (1984) A precipitation sampler inter-comparison. Water Air Soil Pollut 23:1–13CrossRefGoogle Scholar
  15. Choudhury BJ, Monteith JL (1988) A four-layer model for the heat budget of homogeneous land surfaces. Q J Roy Meteorol Soc 114:373–398CrossRefGoogle Scholar
  16. Cowan IR (1968) Mass, heat and momentum exchange between stands of plants and their atmospheric environment. Q J Roy Meteorol Soc 94:523–544CrossRefGoogle Scholar
  17. Daamen CC (1997) Two source model of surface fluxes for millet fields in Niger. Agr Forest Meteorol 83:205–230CrossRefGoogle Scholar
  18. Dämmgen U, Grünhage L (1998) Response of a grassland ecosystem to air pollutants. V.A toxicologic al model for the assessment of dose-response relationships for air pollutants and ecosystems. Environ Pollut 101:375–380CrossRefGoogle Scholar
  19. Dämmgen U, Grünhage L, Haenel H-D, Jäger H-J (1993) Climate and stress in ecotoxicology. A coherent system of definitions and terms. Angew Bot 67:157–162Google Scholar
  20. Dämmgen U, Grünhage L, Küsters A, Jäger H-J (1994) Response of a grassland ecosystem to air pollutants. II. The chemical climate: fluxes of sedimenting airborne matter. Environ Pollut 85:35–42CrossRefGoogle Scholar
  21. Dämmgen U, Grünhage L, Küsters A, Scholz-Seidel C, Jäger H-J (1996) Flußdichten sedimentierender Partikel. I. Depositionen anorganischer Spezies. In: Dämmgen U (Hrsg) Untersuchungen zum chemischen Klima in Südost-niedersachsen. Arbeiten des Teilprojekts A10 „Stoffflüsse in der boden-nahen Atmosphäre“ des Sonderforschungsbereichs 179„Wasser-und Stoff-dynamik in Agrar-Ökosystemen“. Landbauforschung Völkenrode Sonderheft 170:103–153Google Scholar
  22. Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res Atmos 83:1889–1903CrossRefGoogle Scholar
  23. de Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557CrossRefGoogle Scholar
  24. Dickinson RE (1984) Modeling evapotranspiration for three-dimensional global climate models. Geophys Monogr, Amer Geophys Union 29:58–72Google Scholar
  25. ]DIN ISO 4225 (1996) Luftbeschaffenheit-Allgemeine Gesichtspunkte. Begriffe. Beuth, BerlinGoogle Scholar
  26. Duyzer J, Walton S, Gallagher M, Pilegaard K (1995) A multilayer model to describe the above and below canopy exchange of NOx and O3 with forests. Report No.TNO-MW R95/113. TNO, Apeldoom, The NetherlandsGoogle Scholar
  27. ]DVWK — Deutscher Verband für Wasserwirtschaft und Kulturbau eV (1994) Grundsätze zur Ermittlung der Stoffdeposition. DVWK-Merkblätter zur Wasserwirtschaft 229. Wirtschaft-und Verlagsgesellschaft Gas und Wasser, BonnGoogle Scholar
  28. Erickson E (1954) Composition of atmospheric precipitation. H. Sulfur, chloride, iodine compounds. Tellus 4:280–303Google Scholar
  29. Erisman JW, Draaijers GPJ (1995) Atmospheric deposition in relation to acidification and eutrophication. Studies in Environmental Science 63. Elsevier, AmsterdamGoogle Scholar
  30. Erisman JW, van Pul A, Wyers P (1994) Parameterization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmos Environ 28:2595–2607CrossRefGoogle Scholar
  31. Etling D (1987) The planetary boundary layer PBL. In: Landoldt-Börnstein D (ed) New series, group IV, vol 4, meteorology, subvol c, climatology, part 1. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  32. Falge EM (1997) Die Berechnung der Kronendachtranspiration von Fichten-beständen (Picea abies (L.) Karst.) mit unterschiedlichen Modellierung-sansätzen. Bayreuther Forum Ökologie 48Google Scholar
  33. Fick A (1855) Über Diffusion. Poggendorffs Annalen 94:59–86CrossRefGoogle Scholar
  34. Finlayson-Pitts BJ, Pitts JN (1986) Atmospheric chemistry: fundamentals and experimental techniques. Wiley, NewYorkGoogle Scholar
  35. Foken Th, Handorf D, Weisensee U (1997) Modell-und Meßkonzepte für das LITFASS-Monitoring-Meßnetz. Deutscher Wetterdienst, Forschung und Entwicklung, Arbeisergebnisse Nr. 42Google Scholar
  36. Fowler D, Cape JN (1982) Air pollutants in agriculture and horticulture. In: Unsworth MH, Ormrod DP (Hrsg) Effects of gaseous air pollution in agriculture and horticulture. Butterworth Scientific, LondonGoogle Scholar
  37. Fuhrer J, Achermann B (1994) Critical levels for ozone — a UN-ECE workshop report. FAC Schriftenreihe (Eidgenössische Forschungsanstalt für Agrikul-turchemie und Umwelthygiene, Bern) 16:1–328Google Scholar
  38. Gallagher M, Fontan J, Wyers P, Ruijgrok W, Duyzer J, Humrnelshøj P, Pilegaard K, Fowler D (1997) Atmospheric particles and their interactions with natural surfaces. In: Slanina J (ed) Biosphere-atmosphere exchange of pollutants and trace substances. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  39. Galloway JN, Likens GE (1978) The collection of precipitation for chemical analysis. Tellus 30:71–82CrossRefGoogle Scholar
  40. Gao W, Wesely ML, Doskey PV (1993) Numerical modeling of the turbulent diffusion and chemistry of NOx, o3 isoprene, and other reactive trace gases in and above a forest canopy. J Geophys Res Atmos 98:18339–18353CrossRefGoogle Scholar
  41. Grünhage L, Dämmgen U, Haenel H-D, Jäger H-J (1994) Response of a grassland ecosystem to air pollutants. III. The chemical climate: vertical flux densities of gaseous species in the atmosphere near the ground. Environ Pollut 85:43–49CrossRefGoogle Scholar
  42. Grünhage L, Dämmgen U, Hertstein U, Jäger H-J (1993) Response of grassland ecosystem to air pollutants. 1.Experimental concept and site of the Braun-schweig Grassland Investigation Program. Environ Pollut 81:163–171CrossRefGoogle Scholar
  43. Grünhage L, Haenel H-D (1997) PLATIN (PLant-ATmosphere INteraction) I: a model of plant-atmosphere interaction for estimating absorbed doses of gaseous air pollutants. Environ Pollut 98:37–50CrossRefGoogle Scholar
  44. Grünhage L, Haenel H-D (2000) WINDEP — Worksheet-INtegrated Deposition Estimation Programme. In: KRdL — Kommission Reinhaltung der Luft im VDI und DIN (Hrsg) Troposphärisches Ozon. Eine kritische Bestandsauf-nahme über Ursache, Wirkung und Abhilfemaßnahmen. Schriftenreihe der KRdL, Bd 32, Düsseldorf, S 157–173Google Scholar
  45. Grünhage L, Jäger H-J (1994) Atmospheric ozone exposure-potential for vegetation: how suitable are critical levels? In: Fuhrer J, Achermann B (eds) Critical levels for ozone — a UN-ECE workshop report. FAC Schriftenreihe (Eidgenössische Forschungsanstalt für Agrikulturchemie und Umwelthygiene, Bern) Nr 16, S 222–230Google Scholar
  46. Grünhage L, Jäger H-J, Haenel H-D, Hanewald K, Krupa S (1997) PLATIN (PLant-ATmosphere INteraction) II: co-occurrence of high ambient ozone concentrations and factors limiting plant absorbed dose. Environ Pollut 98:51–60CrossRefGoogle Scholar
  47. Grünhage L, Jäger H-J, Haenel H-D, Löpmeier F-J, Hanewald K (1999) The European critical levels for ozone: improving their usage. Environ Pollut 105:163–173CrossRefGoogle Scholar
  48. Grünhage L, Haenel H-D, Jäger H-J (2000) The exchange of ozone between vegetation and atmosphere: micrometeorological measurement techniques and models. Environ Pollut 109:373–392CrossRefGoogle Scholar
  49. Guderian R, van Haut H, Stratman H (1960) Probleme der Erfassung und Beur-teilung von Wirkungen gasförmiger Luftverunreinigungen auf die Vegetation. Z Pflanzenkr Pflanzensch 67:257–264Google Scholar
  50. Haenel H-D (1993) Surface-layer profile evaluation using a generalization of Robinson’s method for determination of d and Z 0 Bound-Lay Meteorol 65:55–67CrossRefGoogle Scholar
  51. Hicks BB, Baldocchi DD, Meyers TP, Hosker RP, Matt DR (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330CrossRefGoogle Scholar
  52. Incl án MG (1996) Modellierung nichtlokaler Austauschprozesses in und über hohen Pflanzenbeständen. Münchener Universitätsschriften, Fakultät für Physik, Meteorol. Institut, Wissenschaftliche Mitteilung Nr 70Google Scholar
  53. Inclán MG, Forkel R, Dlugi R, Stull RB (1996) Application of transilient turbulent theory to study interactions between the atmospheric boundary layer and forest canopies. Bound-Lay Meteorol 79:315–344CrossRefGoogle Scholar
  54. Jarvis PG, McNaughton KG (1996) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49CrossRefGoogle Scholar
  55. Jetten TH (1992) Physical description of transport processes inside an Open Top Chamber in relation to field conditions. PhD thesis, Agricultural University, WageningenGoogle Scholar
  56. Kärenlampi L, Skärby L (1996) critical levels for ozone in Europe: testing and finalizing the concepts. UN-ECE workshop report. University of Kuopio, Department of Ecology and Environmental Science, KuopioGoogle Scholar
  57. Kramm G (1995) Zum Austausch von Ozon und reaktiven Stickstoffverbindungen zwischen Atmosphäre und Biosphäre. IFU Schriftenreihe, Fraunhofer-Institut für Atmosphärische Umweltforschung Garmisch-Partenkirchen Nr 34Google Scholar
  58. Krupa SV, Grünhage L, Jäger H-J, Nosal M, Manning WJ, Legge AH, Hanewald K (1995) Ambient ozone (O3) and adverse crop response: a unified view of cause and effect. Environ Pollut 87:119–126CrossRefGoogle Scholar
  59. Laisk A, Kull O, Moldau H (1989) Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol 90:1163–1167CrossRefGoogle Scholar
  60. Lefohn AS, Runeekles VC (1987) Establishing standards to protect vegetation-ozone exposure/dose considerations. Atmos Environ 21:561–568CrossRefGoogle Scholar
  61. Legge AH, Grünhage L, Nosal M, Jäger H-J, Krupa SV (1995) Ambient ozone and adverse crop response: an evaluation of North American and European data as they relate to exposure indiees and critieal levels. J Appl Bot 69:192–205Google Scholar
  62. Leser H (1984) Zum Ökologie-, Ökosystem-und Ökotopbegriff. Natur und Landschaft 59:351–357Google Scholar
  63. Li H, Reynolds JF (1995) On definition and quantification of heterogeneity. Oikos 73:280–284CrossRefGoogle Scholar
  64. Lloyd J, Grace J, Miranda AC, Meir P, Wong SC, Miranda HS, Wright IR, Gash JHC, McIntyre J (1995) A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant Cell Environ 18:1129–1145CrossRefGoogle Scholar
  65. Lo Seen D, Chehbouni A, Njoku E, Saatchi S, Mougin E, Monteny B (1997) An approach to couple vegetation functioning and soil-vegetation-atmosphere-transfer models for semiarid grassland during the HAPEX-Sahel experiment. Agr Forest Meteorol 83:49–74CrossRefGoogle Scholar
  66. Lovett GM (1984) Rates and mechanisms of doud water deposition to a sub-alpine balsam fir forest. Atmos Environ 18:361–371CrossRefGoogle Scholar
  67. Matsushima D, Kondo J (1997) A proper method for estimating sensible heat flux above a horizontal-hornogeneous vegetation canopy using radiometrie surface observations. J Appl Meteorol 36:1696–1711CrossRefGoogle Scholar
  68. Meyers T, Paw U KT (1986) Testing of a higher-order dosure model for modeling airflow within and above plant canopies. Bound-Lay Meteorol 37:297–311CrossRefGoogle Scholar
  69. Meyers TP, Paw UKT(1987) Modeling the plant canopy micrometeorology with higher-order dosure principles. Agr Forest Meteorol 41:143–163CrossRefGoogle Scholar
  70. Meyers TP, Finkelstein P, Clarke J, Ellestad TG, Sims PF (1998) A multilayer model for inferring dry deposition using standard meteorological measurements. J Geophys Res Atmos 103:22645–22661CrossRefGoogle Scholar
  71. Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the atmosphere near the ground (Translation in Aerophysics of airpollution edited by JA Fay, DP Hoult, American Institute of Aeronautics and Astronautics, New York, pp 90–119, 1969). Akademiia Nauk SSSR, Leningrad, Trudy Geofizi-cheskowo Instituta 151 (24):163–187Google Scholar
  72. Nagel H-D, Smiatek G, Werner B (1994) Das Konzept der kritischen Eintrags-raten als Möglichkeit zur Bestimmung von Umweltbel astungs-und-qualitätskriterien — Critical Loads and Critical Levels-. Metzler-Poeschel, StuttgartGoogle Scholar
  73. Nicholson KW (1988) A review of particle resuspension. Atmos Environ 22:2639–2651CrossRefGoogle Scholar
  74. ]NLW — Niedersächsisches Landesamt für Wasserwirtschaft (1987) Belastung von Wasser und Boden durch Niederschläge. Bestandsaufnahme und Konzept für ein Untersuchungs-und Forschungsprogramm. Niedersächsisches Landesamt für Wasserwirtschaft, HildesheimGoogle Scholar
  75. Nobel PS (1991) Physicochemical and environmental plant physiology. Academic Press, San DiegoGoogle Scholar
  76. O’Gara PJ (1922) Sulfur dioxide and fume problems and their solution. Quoted in: Olsen JC „Fourteenth semiannual meeting of the American Institute of Chemical Engineers“. J Industr Eng Chem 14:744–745Google Scholar
  77. Oltchev A, Constantin J, Gravenhorst G, Ibrom A, Ioo Y-T, Kim Y-C (1996) A sixlayer SVAT model for energy and mass transfer and its application to a spruce (Picea abies (L.) Karst) forest in Central Germany. J Korean For Soc 85:210–224Google Scholar
  78. Oltchev A, Constantin J, Gravenhorst G, Ibrom A (1997) Asix-layer SVAT model for a simulation of water vapour and sensible heat fluxes in a spruce forest. J Hydrol Hydromech 45:5–37Google Scholar
  79. Riehm H, Quellmalz, Kraus M (1965) Ergebnisse atmosphärisch-chemischer Untersuchungen in Mitteleuropa. Zentralbl Biol Aerosolforsch 12:434–454Google Scholar
  80. Roedel W (1992) Physik unserer Umwelt: Die Atmosphäre. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  81. Schädler G, Kalthoff N, Fiedler F (1990) Validation of a model for heat, mass and momentum exchange over vegetated surfaces using LOTREX-10E/HIBE88 data. Beitr Phys Atmosph 63:85–100Google Scholar
  82. Sehmel GA (1980) Particle and gas dry deposition: a review. Atmos Environ 14:983–1011CrossRefGoogle Scholar
  83. Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (SiB) for use in general eirculation models. J Atmos Sci 43:505–531CrossRefGoogle Scholar
  84. Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops — an energy combination theory. Q J Roy Meteorol Soc 111:839–855CrossRefGoogle Scholar
  85. Smith RA (1872) Air and rain. The beginnings of a chemical climatology. Longmans Green, LondonGoogle Scholar
  86. Smith RI, Fowler D, Sutton MA, Flechard C, Coyle M (2000) Regional estimation of pollutant gas dry deposition in the UK: model description, sensitivity analyses and outputs. Atmos Environ 34:3757–3777CrossRefGoogle Scholar
  87. Su H-B, Paw UKT, Shaw RH (1996) Development of a coupled leaf and canopy model for the simulation of plant-atmosphere interaction. J Appl Meteorol 35:733–748CrossRefGoogle Scholar
  88. Tingey DT, Taylor GE (1982) Variation in plant response to ozone: a conceptual model of physiological events. In: Unsworth MH, Ormrod DP (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworth Seientific, LondonGoogle Scholar
  89. ]UBA — Umweltbundesamt (1998) Emissionen nach Emittentengruppen im bisherigen Bundesgebiet 1970 bis 1995 (Stand: Februar 1998). Umweltbundesamt, BerlinGoogle Scholar
  90. van Eimern J, Häckel H (1984) Wetter-und Klimakunde. Ulmer, StuttgartGoogle Scholar
  91. ]VDI 2309 Bl. 1 (1983) Ermittlung von Maximalen Immissions-Werten. Grundlagen — Determination of Maximum Immission Values. Fundamentals. Beuth, BerlinGoogle Scholar
  92. ]VDI 2310 Bl.6 (1989) Maximale Immissions-Werte zum Schutz der Vegetation. Maximale Immissions-Konzentrationen für Ozon — Maximum Immission Values to Protect Vegetation. Maximum Immission Concentrations for Ozone. Beuth, BerlinGoogle Scholar
  93. ]VDI 2310 Bl. 19 (1992) Maximale Immissions-Werte zum Schutz des Menschen. Maximale Immissions-Konzentrationen für Schwebstaub — Maximum Immission Values Referring to Human Health. Maximum Immission Concentrations for Suspended Particulate Matter. Beuth, BerlinGoogle Scholar
  94. ]VDI 2450 Bl. 1 (1977) Messen von Emission, Transmission und Immission luft-verunreinigender Stoffe. Begriffe, Definitionen, Erläuterungen. Beuth, BerlinGoogle Scholar
  95. ]VDI 2463 Bl. 1 (1999) Messen von Partikeln. Gravimetrische Bestimmung der Massenkonzentration von Partikeln in der Außenluft. Grundlagen. Beuth, BerlinGoogle Scholar
  96. Wang D, Hinckley M, Cumming AB, Braatne J (1995) A comparison of measured and modeled ozone uptake into plant leaves. Environ Pollut 89:247–254CrossRefGoogle Scholar
  97. Wesely ML (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos Environ 23:1293–1304CrossRefGoogle Scholar
  98. Wilson NR, Shaw RH (1977) A high er order closure model for canopy flow. J Appl Meteorol 16:1197–1205CrossRefGoogle Scholar
  99. ]WMO — World Meteorological Organization (1971) WMO Operations Manual — sampling and analysis techniques for chemical constituents in air and precipitation. WMO 299, GenevaGoogle Scholar
  100. Zhang L, Dawes WR, Hatton TJ (1996) Modelling hydrologie processes using a biophysically based model-application of WAVES to FIVE and HAPEX-MOBILHY. J Hydrol 185:147–169CrossRefGoogle Scholar

Literatur

  1. Adams DF, Hendrix JW, Applegate HG (1957) Relationship among exposure periods, foliar burn and fluorine content of plants exposed to hydrogen fluoride. J Agric Food Chem 5:108–116CrossRefGoogle Scholar
  2. Agrawal M, Agrawal SB, Krizek DT, Kramer GF, Lee EH, Mirecki RM, Rowland RA (1991) Physiological and morphological responses of snapbean plants to ozone stress as influenced by pretreatment with UV-B radiation. In: Abrol YP et al (eds) Impact of global climate change on photosynthesis and plant productivity. Oxford-IBH Publ, New Delhi, India, pp 133–146Google Scholar
  3. Andersen CP, Scagel CF (1997) Nutrient availibility alters belowground respiration of ozone-exposed ponderosa pine. Tree Physiol 17 (in press)Google Scholar
  4. Atkinson CJ, Winner WE, Mooney HA (1988) Gas exchange and SO2 fumigation studies with irrigated and non irrigated field grown Diplacus aurantiacus and Heteromeles arbutifolia. Oecologia 75:386–393CrossRefGoogle Scholar
  5. Baker CK, Unsworth MH, Greenwood P (1982) Leaf injury on wheat plants exposed in the field in winter to SO2. Nature 299:149–151CrossRefGoogle Scholar
  6. Barnes JD, Davison AW (1988) Interaction between ozone and frost sensitivity in clonal trees of Norway spruce (Picea abies L Karst). Environ Pollut 53:415–417CrossRefGoogle Scholar
  7. Booker FL, Miller JE, Fiscus EL (1992) Effects of ozone and UV-B radiation on pigments, biomass and peroxidase activities in soybean. In: Berglund RL (ed) tropospheric ozone II: effects, modeling and control. Transaction Series 20. Air and Waste Management Assoc, Pittsburg, USA, S. 489–503Google Scholar
  8. Brennan E, Leone IA, Daines RH (1950) Fluorine toxicity in tomato as modified by alterations in the nitrogen, calcium and phosphorus nutrition of the plant. Plant Physiol 25:736–747CrossRefGoogle Scholar
  9. Bressan RA, Wilson LG, Filner P (1978) Mechanisms of resistance to sulfur dioxide in the Cucurbitaceae. Plant Physiol 61: 761–767CrossRefGoogle Scholar
  10. Brewer RF, Guillemet FB, Creveling RK (1961) Influence of NPK fertilization on ineidence and severity of oxidant injury to mangels and spinach. Soil Sci 92:298–301CrossRefGoogle Scholar
  11. Bytnerowicz A, Olszyk DM, Fox CA, Dawson PJ, Kats G, Morrison CL, Wolf J (1988) Responses of desert annual plants to ozone and water stress in an in situ experiment. JAPCA 38:1145–1151CrossRefGoogle Scholar
  12. Bytnerowicz A, Poth M, Takemoto BK (1990) Effects of photochemical smog and mineral nutrition on ponderosa pine seedlings. Environ Pollut 67:233–248CrossRefGoogle Scholar
  13. Chappelka AH, Freer-Smith PH (1995) Predisposition of trees by air pollutants to low temperatures and moisture stress. Environ Pollut 87:105–117CrossRefGoogle Scholar
  14. Cowling DW, Lockyer DR (1978) The effect of SO2 on Lolium perenne L grown at different levels of sulphur and nitrogen nutrition. J Exp Bot 29:257–265CrossRefGoogle Scholar
  15. Dobson MC, Taylor G, Preer-Smith PH (1990) The control of ozone uptake by Picea abies (L) Karst and P. sitchensis (Bong) Carr during drought and interacting effects on shoot water relations. New Phytol 116:465–474CrossRefGoogle Scholar
  16. Dugger WM Jr, Taylor OC, Klein WH, Shropshire W (1963) Action spectrum of peroxyacetyl nitrate damage to bean plants. Nature 198:75–76CrossRefGoogle Scholar
  17. Dugger Jr WM, Ting IP (1968) The effect of peroxyacetyl nitrate on plants: photo-reductive reactions and susceptibility of bean plants to PAN. Phytopathology 56:1102–1107Google Scholar
  18. Dunning JA, Heck WW (1977) Response of bean and tobacco to ozone: effect of light intensity, temperature and relative humidity. JAPCA 27:882–886Google Scholar
  19. Dunning JA, Heck WW, Tingey DT (1974) Foliar sensistivity of pinto bean and soybean to ozone as affected by temperature, potassium nutrition and ozone dose. Water Air Soil Pollut 3:305–313Google Scholar
  20. Edwards GS, Pier PA, Kelly JM (1990) Infleunce of ozone and soil magnesium status on the cold hardiness of loblolly pine (Pinus taeda L) seedlings. New Phytol 115:157–164CrossRefGoogle Scholar
  21. Eisenstat DM, Syvertsen JP, Dean TJ, Yelenosky G, Johnson JD (1991) Sensitivity of frost resistance and growth in citrus and avocado to chronic ozone exposure. New Phytol 118:139–146CrossRefGoogle Scholar
  22. Enderlein H, Kästner W (1967) Welchen Einfluß hat der Mangel eines Nährstoffes auf die SO2-Resistenz 1 jähriger Kiefern. Arch Forstwes 16:431–435Google Scholar
  23. EPA (United States Environmental Protection Agency) (1986) Air Quality criteria for ozone and other photochemical oxidants, Vol III (of V). EPA 600/8-84/020cF, US EPA, Center for Environmental Research Information, Cincinnati OH 45268Google Scholar
  24. Feder WA, Shrier R (1990) Combination of UV-B and ozone reduces pollen tube growth more than either stress. Environ Exp Bot 30:451–454CrossRefGoogle Scholar
  25. Fincher J, Alseher RG (1992) The effect oflong-term ozone exposure on injury in seedlings of red spruce (Picea rubens Sarg). New Phytol 120:49–59CrossRefGoogle Scholar
  26. Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717CrossRefGoogle Scholar
  27. Freer-Smith PH, Mansfield TA (1987) The combined effects of low temperature and SO2-NO2pollution on the new seasons’s growth and water realtions of Picea sit-chensis. New Phytol 106:237–250CrossRefGoogle Scholar
  28. Gerant D, Podor M, Grieu P, Afif D, Cornu S, Morabito D, Banvoy J, Robin C, Dizengremel P (1996) Carbon metabolism enzyme activities and carbon partitioning in Pinus halipensis Mill exposed to mild drought and ozone. J Plant Physiol 148:142–147CrossRefGoogle Scholar
  29. Greitner CS, Pell EJ, Winner WE (1994) Analysis of aspen foliage exposed to multiple stresses: ozone, nitrogen deficiency and drought. New Phytol 127:579–589CrossRefGoogle Scholar
  30. Guderian R (1970) Untersuchungen über quantitative Beziehungen zwischen dem Schwefelgehalt von Pflanzen und dem Schwefeldioxidgehalt der Luft. Z Pflan-zenkrh Pflanzensch 77:200–220Google Scholar
  31. Guderian (1971) Einfluß der Nährstoffversorgung auf die Aufnahme von Schwefeldioxid aus der Luft und auf die Pflanzenanfälligkeit. Schriftenr Landesanstalt für Immissions-und Bodennutzungschutz des Landes NW, Essen 23: 51–57Google Scholar
  32. Guderian R (1977) Air pollution. Phytotoxicity of aeidic gases and its significance in air pollution control. Ecol Stud 22. Springer, Berlin Heidelberg New YorkGoogle Scholar
  33. Guderian R, Wienhaus O (1996), Neuartige Waldschäden’ und Luftverunreini-gungen aus gegenwärtiger Sicht. Deutscher Forstverein Jahresbericht 1996:181–200Google Scholar
  34. Harkov R, Brennan E (1980) The influence of soil fertility and water stress on the ozone response of hybrid poplar trees. Phytopathology 70:991–994CrossRefGoogle Scholar
  35. Heagle AS (1979) Effects of growth media, fertilizer rate and hour and season of exposure on sensitivity of four soybean cultivars to ozone, Environ Pollut 18:313–322CrossRefGoogle Scholar
  36. Heagle AS, Letchworth MB, Mitchell CA (1983) Effects of growth medium and fertilizer rate on the yield response of soybeans exposed to chronic doses of ozone. Phytopathology 73:134–139CrossRefGoogle Scholar
  37. Heagle AS, Flagler RB, Patterson RP, Lesser VM, Shafer SR, Heck WW (1987) Injury and yield response of soybean to chronic doses of ozone and soil moisture deficit. Crop Sci 27:1016–1024CrossRefGoogle Scholar
  38. Heck WW, Dunning JA (1967) The effects of ozone on tobacco and pinto bean as conditioned by several ecological factors. JAPCA 17:112–114Google Scholar
  39. Heck WW, Heagle AS, Miller JE (1994) Factors affecting plant response to ozone an overview. In: Kuttler W, Jochimsen M (eds) Immissionsökologische Forschung im Wandel der Zeit. Westarp Wissenschaften, Essen, S 113–130Google Scholar
  40. Heggestad HE, Heck WW (1971) Nature, extent, and variation of plant response to air pollutants. Adv Agron 23:111–145CrossRefGoogle Scholar
  41. Heggestad HE, Burleson FR, Middleton JT, Darley EF (1964) Leaf injury on tobacco varieties resulting from ozone, ozonated hexene-1 and ambient air of metropolitan areas. Int J Air Pollut 8:1–10Google Scholar
  42. Huttunen S (1984) Interactions of disease and other stress factors with atmospheric pollution. In: Treshow M (ed)Air pollution and plant life. Wiley, Chichester, pp 321–355Google Scholar
  43. Jones T, Mansfield TA (1982) The effect of SO2 O2 on growth and development of seedlings of Phleum pratense under different light and temperature environments. Environ Pollut 27:57–71CrossRefGoogle Scholar
  44. Juhren M, Noble W, Went FW (1957) The standardization of Poa annua as an indicator of smog concentrations. I: Effects of temperature, photoperiod, and light intensity during growth of the test plants. Plant Physiol 32:576–586CrossRefGoogle Scholar
  45. Jung I, Winter K (1992) Mineral nutrient deficiency increases the sensitivity of photosynthesis to sulfur dioxide in needles of a coniferous tree, Abies nordmannia. Oecologia 90:70–73CrossRefGoogle Scholar
  46. Kobayashi K, Miller JE, Flagler RB, Heck WW (1993) Model analyses of interactive effects of ozone and water stress on the yield of soybean. Environ Pollut 82: 39–45CrossRefGoogle Scholar
  47. Kozlowski TT, Pallardy SG (1979) Stomatal responses of Fraxinus pennsylvanica seedlings during and after flooding. Physiol Plant 46:155–158CrossRefGoogle Scholar
  48. Kropff MJ, Smeets WLM, Meijer EMJ, van der Zalm AJA, Bakx EJ (l990) Effects of sulfur dioxide on leaf photosynthesis: the role of temperature and humidity. Physiol Plant 655–661Google Scholar
  49. Kuiper PJC (l964) Dependence upon wavelength of stomatal movement in epidermal tissue of Senecio edoris. Plant Physiol 39:952–955CrossRefGoogle Scholar
  50. Lange OL (l975) Plant water relations. Prog Bot 37:78–97Google Scholar
  51. Leone IA, Brennan E (1970) Ozone toxieity in tomato as modified by phosphorus nutrition. Phytopathology 60:1521–1524CrossRefGoogle Scholar
  52. Leone IA, Brennan E (l972) Modification of sulfur dioxide injury to tobacco and tomato by nitrogen and sulfur nutrition. JAPCA 544–547Google Scholar
  53. MacDowall FDH (1965) Predisposition of tobacco to ozone damage. Can J Plant Sci 45:1–12CrossRefGoogle Scholar
  54. Matyssek R, Günthardt-Goerg MS, Maurer S, Keller T (1995) Nighttime exposure to ozone reduces whole-plant production in Betulapendula. Tree Physiol 15:159–165CrossRefGoogle Scholar
  55. McCune DC, Hitchcock AE, Weinstein LH (l966) Con Boyce Tompson. Plant Res 23:295–299Google Scholar
  56. McLean DC, Schneider RE, McCune DC (l976) J Am Soc Hort Sci 101:347–352Google Scholar
  57. Mehlhorn H, Wenzel AA (l995) Manganese defieiency enhances ozone toxicity in bush beans (Phaseolus vulgaris L cv Saxa). J Plant Physiol 148:155–159CrossRefGoogle Scholar
  58. Meidner H (l968) The comparative effect of blue and red light on the stomata of Allium cepa L. and Xanthium pennsylvanicum. J Exp Bot 19:146–151CrossRefGoogle Scholar
  59. Moran JF, Becana M, Iturbe-Ormaexte I, Frenchilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352CrossRefGoogle Scholar
  60. Mortensen LM (1989) Review: effects of ozone on plants in relation to other environmental conditions. Meddelelser fra Norsk Institutt for Skogforskning 42:57–66Google Scholar
  61. Noland TL, Kozlowski TT (1979) Effect of SO2 on stomatal aperture and sulfur up-take of woody angiosperm seedlings. Can J For Res 9:57–62CrossRefGoogle Scholar
  62. Norby RJ, Kozlowski TT (1981) Relative sensitivity of three species of woody plants to SO2 at high or low exposure temperature. Oecologia 51:33–36CrossRefGoogle Scholar
  63. Norby RJ, Kozlowski TT (l983) Flooding and SO2 stress interaction in Betula papyrifera and B.nigra seedlings. For Sci 29:739–750Google Scholar
  64. Pääkönen E, Holopainen T (1995) Influence of nitrogen supply on the response of clones of birch (Betula pendula Roth) to ozone. New Phytol 129:595–603CrossRefGoogle Scholar
  65. Pell EJ, Winner WE, Vinten-Johansen C, Mooney HA (l990) Response of radish to multiple stresses. I. Physiological and growth responses to changes in ozone and nitrogen. New Phytol 115:439–446CrossRefGoogle Scholar
  66. Pell EJ, Sinn JP, Vinten Johansen C (1995) Nitrogen supply as a limiting factor determining the sensitivity of Populus tremuloides Michx to ozone stress. New Phytol 130:437–446CrossRefGoogle Scholar
  67. Rao MV, Paliyath G, Ormrod DP (l996) Ultraviolet-B and ozone-induced bioehemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136CrossRefGoogle Scholar
  68. Rao MV, Ormrod DP (l995) Ozone exposure decreases UVB sensitivity in a UVB-sensitive flavonoid mutant of Arabidopsis. Phytochem Phytobiol 61:71–78CrossRefGoogle Scholar
  69. Rist DL, Davis DD (l979) The influence of exposure temperature and relative humidity on the response of pinto bean foliage to sulfur dioxide. Phytopathology 69:231–235CrossRefGoogle Scholar
  70. Rowland AJ, Drew MC, Wellburn AR (1987) Foliar entry and incorporation of atmospheric nitrogen dioxide into barley plants of different nitrogen status. New Phytol l07:357–371CrossRefGoogle Scholar
  71. Rowland-Bamford AJ, Drew MC (1988) NO2 assimilation and on the gas exchange characteristics of barley plants exposed to atmospheric NO2. J Exp Bot 39:1287–1297CrossRefGoogle Scholar
  72. Saurer M, Maurer S, Matyssek R, Landolt W, Günthardt-Goerg MS, Siegenthaler U (1995) The influence of ozone and nutrition on δ13C in Betula pendula. Oecologia 103:397–406CrossRefGoogle Scholar
  73. Schulze ED (1986) Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annu Rev Plant Physiol 37:247–274CrossRefGoogle Scholar
  74. Senser M (1990) Infleunce of soil substrate and ozone plus acid mist on the frost resistance of younf Norway spruce. Environ Pollut 64:265–278CrossRefGoogle Scholar
  75. Shanklin J, Kozlowski TT (1984) Effect of temperature preconditioning on responses of Fraxinuspennsylvanica seedlings to SO2 Environ Pollut 36:311–326CrossRefGoogle Scholar
  76. Shanklin J, Kozlowski TT (1985) Effect of flooding of soil on growth and subsequent responses of Taxodium distichum seedlings to SO2 Environ Pollut 38:199–212CrossRefGoogle Scholar
  77. Sheriff DW (1977) The effect of humidity on water uptake by, and viscous flow resistance of excised leaves of a number of species: physiological an anatomical observations. J Exp Bot 28:1399–1407CrossRefGoogle Scholar
  78. Srivastava HS, Ormrod DP (1984) Effects of nitrogen dioxide and nitrate nutrition on growth and nitrate assimilation in bean leaves. Plant Physiol 76:418–423CrossRefGoogle Scholar
  79. Srivastava HS, Iolliffe PA, Runeckless VC (1975) The effects of environmental conditions on the inhibition of leaf gas exchange by NO2. Can J Bot 53:475–482CrossRefGoogle Scholar
  80. Temple PJ, Taylor OC, Benoit LF (1985) Cotton yield responses to ozone as media-ted by soil moisture and evapotranspiration. J Environ Qual 14:55–60CrossRefGoogle Scholar
  81. Tesche M, Feiler S, Michael G, Ranft H, Bellmann C (1989) Physiologische Reaktionen der Fichte (Picea abies) auf komplexen SO2-und Trockenstreß. I: Reaktionen auf gleichzeitiges Einwirken von SO2und Trockenheit. Eur J For Pathol 19:281–292CrossRefGoogle Scholar
  82. Thomas MD, Hendricks RH, Bryner CC, Hill GR (1943) The utilization of sulphate and sulphur dioxide for the sulphur nutrition of alfalfa. Plant Physiol 18:345–371CrossRefGoogle Scholar
  83. Tingey DT, Hogsett WE (1985) Water stress reduces ozone injury via astomatal mechanism. Plant Physiol 77:944–947CrossRefGoogle Scholar
  84. Tingey DT, Thutt GL, Gumpertz ML, Hogsett WE (1982) Plant water status influences ozone sensitivity of bean plants. Agric Environ 7:243–254CrossRefGoogle Scholar
  85. Tjoelker MG, Luxmoore RJ (1991) Soil nitrogen and chronic ozone stress influence on physiology, growth and nutrient status of Pinus taeda Land Liridendron tulipifera L seedlings. New Phytol 119:69–81CrossRefGoogle Scholar
  86. Tjoelker MG, Volin JC, Oleksyn J, Reich PB (1993) dark respiration and growth. New Phytol 124:627–636CrossRefGoogle Scholar
  87. UBA (Umweltbundesamt) (1997) Daten zur Umwelt. Der Zustand der Umwelt in Deutschland. E.Schmidt Verlag, BerlinGoogle Scholar
  88. Vogel R (1960) Über die Strahlungseinflüsse auf die Stomatabewegung sowie deren Bedeutung für die Anwendung von Kunstlicht zur Pflanzenzucht. Gartenbau-wissenschaft 24:488–525Google Scholar
  89. Weinstein LH, Alseher-Hermann R (1982) Physiologieal responses of plants to fluorine. In: Unsworth MH, Ormrod DP (eds) Effeets of gaseous air pollution in agriculture and hortieulture. Butterworth Seientifie, London, pp 139–167Google Scholar
  90. Wellburn AR, Higginsdon C, Robinson D, Walmsley C (1981) Bioehemieal explanation of more than additive inhibitory effeets of low atmospherie levels of sulfur dioxide plus nitrogen dioxide upon plants. New Phytol 88:223–237CrossRefGoogle Scholar
  91. Wentzel KF (1956) Winterfrost 1956 und Rauehsehäden. Allgem Forstz 11:541–543Google Scholar
  92. Wenzel AA, Mehlhorn H (1995) Zinc defieieney enhances ozone toxicity in bush beans (Phaseolus vulgaris L. cv. Saxa). J Exp Bot 46:867–872CrossRefGoogle Scholar
  93. Willekens H, Van Camp W, Van Montagu M, Inzé D, Langebartels C, Sandermann Jr H (1994) Ozone, sulfur dioxide, and ultraviolet B have similar effeets on mRNA accumulation of antioxidant genes in Nicotianaplumbaginifolia L. Plant Physiol 106:1007–1014Google Scholar
  94. Zimmermann F et al (1997) Wintersehäden 1995/96 in den Kamm-und Hoehlagen des Erzgebirges. AFZ/Der Wald 11:570–582Google Scholar

Literatur

  1. Ayazloo M, Bell JNB (1981) Studies on the tolerance to sulfur dioxide of grass populations in polluted areas. I. Identification of tolerant populations. New Phytol 88:203–222CrossRefGoogle Scholar
  2. Barnes J, Bender J, Borland A (1998) Natural and man-made selection for air pollution resistance. In: Omasa K (ed) Air pollution and biotechnology in plants. Springer-Verlag, Berlin Heidelberg New York (in press)Google Scholar
  3. Beckerson DW, Hofstra G, Wukash R (1979) The relative sensitivities of 33 bean cultivars to ozone and sulfur dioxide singly and in combination in controlled exposures and to oxidants in the field. Plant Dis Rep 63:478–482Google Scholar
  4. Bender J, Weigel H-J (1995) Zur Gefährdung landwirtschaftlicher Kulturpflanzen durch troposphärische Ozonkonzentrationen. Ber Ldw 73:136–156Google Scholar
  5. Bergmann E, Bender J, Weigel H-J (1998) Zur Ozonempfindlichkeit von Wildpflan-zenarten. Agrarökologie Bd 30, Verl Agrarökologie, Berne, HannoverGoogle Scholar
  6. Berrang P, Karnosky DF, Bennett JP (1991) Natural selection for ozone tolerance in Populus tremuloides: an evaluation of nationwide trends. Can J For Res 21: 1091–1097CrossRefGoogle Scholar
  7. Blanchard RO, Baas J, van Cotter H (1979) Oxidant damage to eastern white pine in New Hamshire. Plant Dis Rep 63:177–182Google Scholar
  8. Bowler C, Slooten L, Van den Branden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inzé D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by ozone radicals in transgenic plants. EMBO J 10: 1723–1732Google Scholar
  9. Bressan RA, LeCureux L, Wilson LG, Filner P, Baker LR (1981) Inheritance of resistance to sulfur dioxide in cucumber. Hort Sci 16:332–333Google Scholar
  10. Bücker J, Ballach HJ (1992) Alterations in carbohydrate levels in leaves of Populus due to ambient air pollution. Physiol Plant 86:512–517CrossRefGoogle Scholar
  11. Burr KE, Tinus RW (1996) Use of clones increases the power of physiological experiments on coastal Douglas-fir. Physiol Plant 96:458–466CrossRefGoogle Scholar
  12. Buttler LK, Tibbitts TW (1979) Variation in ozone sensitivity and symptom expression among cultivars of Phaseolus vulgaris L. JAm Soc Hort 104:208–210Google Scholar
  13. Davis DD, Wilhour RG (1976) Susceptibility of woody plants to sulfur dioxide and photochemical oxidants. US-EPA-Report 600/3-76-102. Corvallis, OregonGoogle Scholar
  14. Degen B, Scholz F (1994) Wirkungen von Luftverunreinigungen auf Waldökosysteme — ein systemanalytischer Ansatz aus Sicht der Ökologischen Genetik. In: Burghardt W et al (Hrsg) Essener Ökologische Schriften, Westarp Wiss, Magdeburg, S 79–99Google Scholar
  15. Dochinger LS, Seliskar CE (1965) Results from grafting chlorotic dwarf of eastern white pine. Phytopathology 55:404–407Google Scholar
  16. Engle RL, Gableman WH (1966) Inheritance an machanism for resistance to ozone damage in onion, Allium cepa L. Proc Am Soc Hort Sci 89:423–430Google Scholar
  17. Forberg E, Aarnes H, Nilsen S (1987) Effect of ozone on net photosynthesis in oat (Avena sativa) and duckweed (Lemna gibba). Environ Pollut 47:285–291CrossRefGoogle Scholar
  18. Galliano H, Heller W, Sandermann H Jr (1993) Ozone induction and purification of spruce cinnamyl alcohol dehydrogenase. Phytochemistry 32:557–563CrossRefGoogle Scholar
  19. Genys JB, Heggestad HE (1983) Relative sensitivity of various type s of eastern white pine, Pinus strobus, to sulfur dioxide. Can J For Res 13:1262–1265CrossRefGoogle Scholar
  20. Glombitza S, Bender J, Weigel HJ (1998) Bewertung von Ozonwirkungen auf mittel-europäische Pflanzenarten unter Verwendung existierender Literaturdatenbanken. Bericht der FAL, Braunschweig, PAÖ 9707.02Google Scholar
  21. Guderian R (1966) Reaktionen von Pflanzengemeinschaften des Feldfutterbaus auf Schwefeldioxideinwirkungen. Schriftenreihe der Landesanstalt für Immissions-und Bodennutzungsschutz des Landes Nordrhein-Westfalen 4:80–100Google Scholar
  22. Guderian R (1977) Air pollution. Phytotoxicity of acidic gases and ist significance in air pollution control. Ecol Stud 22. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  23. Guderian R, van Haut H, Stratmann H (1969) Experimentelle Untersuchungen über pflanzenschädigende Fluorwasserstoff-Konzentrationen. Forschungsberichte des Landes NW Nr 2017. Westdeutscher Verlag, KölnGoogle Scholar
  24. Guderian R, Stratmann H (1962) Freilandversuche zur Ermittlung von Schwefeldi-oxidwirkungen auf die Vegetation. 1.Teil:Übersicht zur Versuchsmethodik und Versuchsauswertung. Forschungsberichte des Landes Nordrhein-Westfalen Nr 1118. Westdeutscher Verlag, KölnGoogle Scholar
  25. Guderian R, Stratmann H (1968) Freilandversuche zur Ermittlung von Schwefeldi-oxidwirkungen auf die Vegetation. III. Teil:Grenzwerte schädlicher SO2-Immis-sionen für Obst-und Forstkulturen sowie für landwirtschaftliche und gärtnerische Pflanzenarten. Forschungsberichte des Landes Nordrhein-Westfalen Nr 1920, Westdeutscher Verlag, KölnGoogle Scholar
  26. Gupta AS, Alseher RG, McCune D (1991) Response of photosynthesis and cellular antioxidants to ozone in Populus leaves. Plant Physiol 96:650–655CrossRefGoogle Scholar
  27. Guri A (1983) Variation in glutathione and ascorbic acid content among selected cultivars of Phasealus vulgaris prior to and after exposure to ozone. Can J Plant Sci 63:733–737CrossRefGoogle Scholar
  28. Hanson GP, Addis DH, Thorne L (1976) Inheritance of photochemical air pollution tolerance in petunias. Can J Genet Cytol 18:579–592Google Scholar
  29. Haut van H, Stratmann H (1970) Farbtafelatlas über SO2-Wirkungen an Pflanzen. Giradet, EssenGoogle Scholar
  30. Havranek WEM, Wieser G (1993) Zur Ozontoleranz der europäischen Lärche (Larix decidua Mill). Forstw Centralbl 112:56–64CrossRefGoogle Scholar
  31. Heagle AS (1979) Ranking of soybean cultivars for resistance to ozone using different ozone doses and response measures. Environ Polut 19:1–10CrossRefGoogle Scholar
  32. Heath RL (1980) Initial events in injury to plants by air polltants. Annu Rev Plant Physiol 31:395–431CrossRefGoogle Scholar
  33. Heggestad HE, Menser HA (1962) Leaf spot-sensitive tobacco strain Bel W3, a biological indicator of the air pollutant ozone. Phytopathology 52:735Google Scholar
  34. Howell RK, Devine TE, Hanson CH (1971) Resistance of selected alfalfa strains to ozone. Crop Sci 11:114–115CrossRefGoogle Scholar
  35. Hüve K, Dittrich A, Kindermann G, Slovik S, Heber U (1995) Detoxification of SO2 in conifers differing in SO2-tolerance. A comparison of Picea abies, Picea pungens and Pinus sylvestris. Planta 195:578–585CrossRefGoogle Scholar
  36. Kärenlampi SO, Airaksinen K, Miettinen ATE, Kokko HI, Holopainen JK, Kärenlampi LV, Karjalainen RO (1994) Pathogenesis-related proteins in ozone-exposed Norway spruce (Picea abies (Karst) L). New Phytol 126:81–89CrossRefGoogle Scholar
  37. Karnosky DF (1976) Threshold levels for ozone injury to Populus tremuloides by sulfur dioxide and ozone. Can J For Res 6:166–169CrossRefGoogle Scholar
  38. Karnosky DF (1985) Genetic variability in growth responses to SO2.In: Winner WE et al. (eds) Sulfur dioxide and vegetation. Physiology, ecology and policy issues. Stanford University Press, Stanford CA, pp 346–356Google Scholar
  39. Karnosky DF, Steiner KC (1981) Provenance and family variation in response of Fraxinus americana and F. pennsylvanica to ozone and sulfur dioxide. Phytopathology 8:804–807CrossRefGoogle Scholar
  40. Karnosky DF, Berrang PC, Scholz F, Bennett IP (1989) Variation in and natural selection for air pollution tolerances in trees. In: Scholz F et al (eds) Genetic effects of air pollutants in forest tree populations. Springer-Verlag, Berlin Heidelberg NewYork, pp 29–37CrossRefGoogle Scholar
  41. Kerstiens G, Lendzian KJ (1989) Interactions between ozone and plant cuticles. I. Ozone deposition and permeability. New Phytol 112: 13–19CrossRefGoogle Scholar
  42. Kimmerer TW, Kozlowski TT (1981) Stomatal conductance and sulfur uptake of five clones of Populus tremuloides exposed to sulfur dioxide. Plant Physiol 67:990–995CrossRefGoogle Scholar
  43. Kondo N, Akiyama Y, Fujiwara M, Sugahara K (1980) Sulfite-oxidizing activities in plants. In: National Institute of Environmental Studies, Japan (ed) Studies on the effects of air pollutants on plants and mechanisms of phytotoxicity. Res Rep 11:137–150Google Scholar
  44. Krupa SV, Tonneijck AEG, Manning WJ (1998) Ozone. In: Flagler RB (ed) Recognition of air pollution injury to vegetation: a pictural atlas. Air Waste Management Association, Pittsburgh, PennsyvaniaGoogle Scholar
  45. Kress LW, Skelly JM, Hinkelmann KH (1982) Relative sensitivity of 18 full-sib families of Pinus taeda to O3. Can J For Res 12:203–209CrossRefGoogle Scholar
  46. Larcher W (1987) Streß bei Pflanzen. Naturwissenschaften 74:158–167CrossRefGoogle Scholar
  47. Levitt J (1980) Responses of plants to environmental stresses. Academic Press, LondonGoogle Scholar
  48. Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14CrossRefGoogle Scholar
  49. Luwe MWF, Heber U (1995) Ozone detoxification in the apoplasm and symplasm of spinach, broad bean and beech leaves at ambient and elevated concentrations of ozone in air. Planta 197:448–455CrossRefGoogle Scholar
  50. Luwe MWF, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacea oleraceaL) leaves. Plant Physiol 101:969–976Google Scholar
  51. Mac Dowall FDH, Vickery LS, Runeckless VC, Patrick ZA (1963) Ozone damage to tobacco in Canada. Can Plant Dis Surv 43:131–151Google Scholar
  52. Madamanchi NR, Alseher RG (1991) Metabolic bases for differences in sensitivity to two pea cultivars to sulfur dioxide. Plant Physiol 97:88–93CrossRefGoogle Scholar
  53. Madamanchi NR, Anderson JV, AIscher RG, Cramer CL, Hess JL (1992) Purification of multiple forms of glutathione reductase from pea (Pisum sativum L) seedlings and enzyme levels in ozone-fumigated pea leaves. Plant Physiol 100:138–145CrossRefGoogle Scholar
  54. Madamanchi NR, Donahue JL, Cramer CL, Alseher RG, Pedersen K (1994) Differential response of Cu, Zn superoxide dismutases in two pea cultivars during a short-term exposure to sulfur dioxide. Plant Mol Biol 26:95–103CrossRefGoogle Scholar
  55. Mächler F, Wasescha MR, Krieg F, Oertli JJ (1995) Damage by ozone and protection by ascorbic acid in barley leaves. J Plant Physiol 147:469–473CrossRefGoogle Scholar
  56. Materna J (1987) Waldschäden in der CSSR. Österr Forstztg 1187:17–19Google Scholar
  57. Mehlhorn H (1990) Ethylene-promoted ascorbate peroxidase aetivity proteets plants against hydrogen peroxide, ozone and paraquat. Plant Cell Environ 13: 971–976CrossRefGoogle Scholar
  58. Miller PR, Taylor OC, Wilhour RG (1982) Oxidant air pollution effeets on a western coniferous forest ecosystem.EPA Rep 600/D-82-276Google Scholar
  59. NAS (National Aeademy of Science) (1977) Ozone and other photoehemieal oxidants. Committee on Medical and Biologie Effeets of Environmental Pollutants, Washington DCGoogle Scholar
  60. NRCC (National Research Couneil of Canada, 1975) Photochemical air pollution. Formation, transport and effeets. Associate Committee on Scientifie Criteria for Environmental Quality, report 12Google Scholar
  61. O’Connor JA, Parbery DG, Strauss W (1974) The effeets of phytotoxic gases on native Australian plant species, part I: aeute effeets of sulfur dioxide. Environ Pollut 7:7–23CrossRefGoogle Scholar
  62. O’Connor JA, Parbery DG, Strauss W (1975) The effeets of phytotoxie gases on native Australian plant species, part 2. Acute injury due to ozone. Environ Pollut 9:181–192CrossRefGoogle Scholar
  63. Oshima RJ, Braegelmann PK, Baldwin DW, van Way V, Taylor OC (1977) Reponses of five cultivars of fresh martket tomato to ozone: a contrast of cultivar screening with foliar injury and yield. Jam Soe Hort Sci 102:286–289Google Scholar
  64. Pääkkönen E, Holopainen T, Kärenlampi L (1997) Variation in ozone sensitivity among clones of Betula pendula and Betulapubescens. Environ Pollut 95:37–44CrossRefGoogle Scholar
  65. Pande PC (1985) An examination of the sensitivity of five barley cultivars to SO2 pollution. Environ Pollut 37:27–41CrossRefGoogle Scholar
  66. Peiser G, Yang SF (1985) Bioehemieal and physiologieal effeets of SO2 on non-photosynthetic processes in plants. In: Winner WE et al (eds) Sulfur dioxide and vegetation. Physiology, ecology and poliey issues. Stanford University Press, Stanford CAGoogle Scholar
  67. Pfanz H, Heber U (1986) Buffer capacities of leaves, leaf cells, and leaf cell organelles in relation to fluxes of potentially acidic gases. Plant Physiol 81:597–602CrossRefGoogle Scholar
  68. Pfanz H, Martinoia E, Lange OL, Heber U (l987) Mesophyll resistances to SO2 fluxes into leaves. Plant Physiol 85:922–927CrossRefGoogle Scholar
  69. Piteher LH, Brennan E, Hurley A, Dunsmuir P, Tepperman JM, Zilinskas BA (l991) Overproduction of Petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone toleranee in transgenic tobacco. Plant Physiol 97:452–455CrossRefGoogle Scholar
  70. Piteher LH, Zilinskas BA (l996) Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistanee to ozoneinduced foliar necrosis. Plant Physiol 110:583–588Google Scholar
  71. Pitelka LF (l988) Evolutionary responses of plants to anthropogenic pollutants. Trends Ecol Evol 3:233–236CrossRefGoogle Scholar
  72. Polle A, Chakrabarti K, Schürmann W, Rennenberg H (1990) Composition and pro perties of hydrogen peroxide deeomposing systems in extracellular and total extracts from needles of Norway spruce (Picea abies L Karst). Plant Physiol 94:312–319CrossRefGoogle Scholar
  73. Ranft H, Dässler HG (l970) Rauchhärtetest an Gehölzen im SO2-Kabinenversueh. Flora 159:573–588Google Scholar
  74. Reich PB (l987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3: 63–91CrossRefGoogle Scholar
  75. Reiling K, Davison AW (l992) Spatial variation in ozone resistance of British populations of Plantago majorL. New Phytol 122:699–708CrossRefGoogle Scholar
  76. Reinert RA (l975) Monitoring, detecting and effects of air pollutants on horticultural crops, sensitivity of genera and species. Hort Sci 10:495–500Google Scholar
  77. Rennenberg H, Huber B, Schröder P, Stahl K, Haunold W, Georgii H-W, Slovik S, Pflanz H (1990) Emission of volatile sulfur compounds from spruce trees. Plant Physiol 92:560–564CrossRefGoogle Scholar
  78. Rentschler I (l973) Die Bedeutung der Wachsstruktur auf den Blättern für die Empfindlichkeit der Pflanzen gegenüber Luftverunreinigungen. In: VDI (Hrsg) Proc 3rd Int Clean Air Congr, Düsseldorf, S A139–A142Google Scholar
  79. Reuter F, Dässler HG (1983) Der Einfluß von Fluorwasserstoff auf Kernobstgehölze, insbesondere auf die Obstart Apfel. I. Untersuchungen zur Resistenz der Kernobstgehölze gegenüber gasförmigen Fluorverbindungen. Arch Gartenbau 31:299–314Google Scholar
  80. Roose ML, Bradshaw AD, Roberts TM (l982) Evolution of resistance to gaseous air pollutants. In: Unsworth MH, Ormrod DP (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworth Scientific, London, pp 379–409Google Scholar
  81. Rosemann D, Heller W, Sandermann H Jr (l99l) Biochemical plant responses to ozone. II. Induction of stibene biosynthesis in Scots pine (Pinus sylvestris L) seedlings. Plant Physiol 97:1280–1286Google Scholar
  82. Sandermann H Jr, Bahnweg G, Ernst D, Heller W, Langebartels C (l999) Molecular biomarkers for ozone/plant genotype and ozone/biotic disease interactions. In: Fuhrer J (ed) Criticallevels for ozone. UNECEWorkshop April 1999, BernGoogle Scholar
  83. Schindlbeck WE (l987) Iso-Peroxidasemuster von Fichtenklonen unterschiedlicher relativer Immissionsresistenz; Zymogrammvergleiche in der Austriebsphase 1986. Eur J For Pathol 17:255–265CrossRefGoogle Scholar
  84. Scholz F (l984) Drohen unsere Wälder durch Luftverunreinigungen genetisch zu verarmen? AFZ 39:1258–1261Google Scholar
  85. Scholz F, Timmann T, Krusche D (l979) Untersuchungen zur Variation der Resistenz gegen HF-Begasung bei Picea abies Familien. Mitt Inst f Forst-und Holzw, Ljubjana, Jugoslawien, S 249–258Google Scholar
  86. Sekiya J, Wilson LG, Filner P (l982) Resistance to injury by sulfur dioxide. Correlation with its reduction to, and emission of, hydrogen sulfide in Cucurbitaceae. Plant Physiol 70:437–441CrossRefGoogle Scholar
  87. Selye H (l936) A syndrome produced by diverse nocuous agents. Nature 138:32CrossRefGoogle Scholar
  88. Simontacchi M, Caro A, Fraga CF, Puntarulo S (l993) Oxidative stress affects α-tocopherol content in soybean embryonie axes upon imbibition and following germination. Plant Physiol 103:949–953Google Scholar
  89. Smith HJ, Davis DD (1977) The influence of needle age on sensitivity of Scotch pine to acute doses of SO2. Plant Dis Rep 61:870–874Google Scholar
  90. Steiner KG, Davis DD (l979) Variation among Fraxinus families in foliar response to ozone. Can J For Res 9:106–109CrossRefGoogle Scholar
  91. Stocker O (l947) Probleme der pflanzlichen Dürreresistenz. Naturwissenschaften 34:362–371CrossRefGoogle Scholar
  92. Stoklasa J (1923) Die Beschädigung der Vegetation durch Rauchgase und Fabrikex-halationen. Urban und Schwarzenberg, MünchenGoogle Scholar
  93. Sutton R, Ting IP (l977) Evidence for the repair of ozone-induced membrane injury. Am J Bot 64:404–411CrossRefGoogle Scholar
  94. Takahama U, Veljovic-Iovanovic S, Heber U (l992) Effects of the air pollutant SO2 on leaves. Inhibition of sulfite oxidation in the apoplast by ascorbate and of apoplastic peroxidase by sulfite. Plant Physiol 100:261–266CrossRefGoogle Scholar
  95. Tanaka K, Suda Y, Kondo N, Sugahara K (1985) O3 tolerance and the ascorbat-dependent H2O2 decomposing system in chloroplasts. Plant Cell Physiol 26:1425–1431Google Scholar
  96. Tanaka K, Saji H, Kondo N (1988) Immunological properties of spin ach glutathione reductase and inductive biosynthesis of the enzyme with ozone. Plant Cell Physiol 29:637–642Google Scholar
  97. Taylor GE Jr, Tingey DT, Gunderson CA (1986) Photosynthesis, carbon allocation, and growth of sulfur dioxide ecotypes of Geranium carolinianum L. Oecologia 68:350–357CrossRefGoogle Scholar
  98. Taylor GE Jr, Tingey DT, Ratsch HC (1982) Ozone flux in Glycinemax (L) Merr: sites of regulation and relationship to leaf injury. Oecologia 53:179–186CrossRefGoogle Scholar
  99. Temple PJ, Jones TE, Lennox RW (1990) Yield loss assessments for cultivars of broccoli, lettuce, and onion exposed to ozone. Environ Pollut 66:289–299CrossRefGoogle Scholar
  100. Teppermann JM, Dunsmuir P (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxieity. Plant Mol Biol 14:501–511CrossRefGoogle Scholar
  101. Thomas MD, Alther EW (1966) The effects of fluoride on plants. Handbook Exp Pharmakol 20/1:231–306Google Scholar
  102. Tingey DT, Andersen CP (1991) The physiological basis of differential plant sensitivity to changes in atmospheric quality. In Taylor GE Jr et al (eds) Ecological genetics and air pollution. Springer, Berlin Heidelberg New York, pp 209–235CrossRefGoogle Scholar
  103. Tingey DT, Standley C, Field RW (1976) Stress ethylene evolution: a measure of ozone effects on plants. Atmos Environ 10:969–974CrossRefGoogle Scholar
  104. Torsethaugen G, Pitcher LH, Zilinskas BA, Pell EJ (1997) Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol 114:529–537Google Scholar
  105. Treshow M, Stewart D (1973) Ozone sensitivity of plants in natural communities. Biol Conserv 5:205–214CrossRefGoogle Scholar
  106. Tsukahara H, Kozlowski TT, Shanklin J (1984) Tolerance of Pinus densijlora, Pinus thunbergii, and Larix leptolepis seedlings to SO2. Plant Soil 88:385–397CrossRefGoogle Scholar
  107. Tzschacksch O (1982) Untersuchungen zur Erblichkeit der SO2-Resistenz bei Kiefer (Pinus silvestris L.) und Douglasie (Pseudotsuga menziesii [Mirb Francvo]) mit Schlußfolgerungen für die Forstwirtschaft. Beitr Forstwirtsch 3:103–106Google Scholar
  108. Varshney SRK, Varshney CK (1984) Effects of SO2 on ascorbic acid in crop plants. Environ Pollut 35:285–290CrossRefGoogle Scholar
  109. von Schroeder J, Reuss C (1873) Die Beschädigung der Vegetation durch Rauch und die Oberharzer Hüttenrauchschäden. Parey, BerlinGoogle Scholar
  110. Wentzel KF (1968) Empfindlichkeit und Resistenzunterschiede der Pflanzen gegenüber Luftverunreinigung. Forstarchiv 39(9):189–194Google Scholar
  111. Westman WE (1979) Oxidant effects on California coastal sage scrub, Science 205:1001–1003CrossRefGoogle Scholar
  112. Wingsle G, Mattson A, Ekblad A, Hällgren JE, Selstam E (1992) Activities of glutathione reductase and superoxide dismutase in relation to changes of lipids and pigments due to ozone in seedlings of Pinus sylvestris (L). Plant Sci 82:167–178Google Scholar
  113. Winner WE, Gillespie C, Shen WS, Mooney HA (1988) Stomatal responses to SO2 and O3. In: Schulte-Hostede S et al (eds) Air pollution and plant metabolism. Elsevier Appl Sci, London, pp 255–271Google Scholar
  114. Wood FA, Coppolino JB (1972) The influence of ozone on deeiduous forest tree species. Mitt Forstl Bundesversuchsanstalt, Mariabrunn 97:233–25Google Scholar

Literatur

  1. Andrae S, Bücker J (1996) Biochemische Indikation von phytorelevanten O3-und/oder SO2 Konzentrationen mit unterschiedlich resistenten Pappelvarie-täten: Zur Persistenz der biochemischen Reaktion. In: Arndt U et al. (Hrsg) Bioindikation: Neue Entwicklungen, Nomenklatur und synökologische Aspekte. Günter Heimbach, Ostfildern, S 187–193Google Scholar
  2. Berry CR (1974) Age of pine seedlings with primary needles affects sensitivity to ozone and sulfurdioxide. Pytopathology 64:207–209CrossRefGoogle Scholar
  3. Berry CR, Ripperton RA (1963) Ozone, a possible cause of white pine emergence tipburn. Phytopathology 53:552–557Google Scholar
  4. BMELF (Bundesministerium für Ernährung Landwirtschaft und Forsten, 1996) Waldzustandsbericht der Bundesregierung 1996, BonnGoogle Scholar
  5. Bücker J, Drogies T (1994) Practical application of the poplar cultivars Loenen and Rochester to indicate the presence of phytorelevant O3 and/or SO2 In: Burghardt W et al. (Hrsg.) Essener Ökologische Schriften, Westarp Wiss, Magdeburg, S 133–140Google Scholar
  6. Davis DD (1977) Response of ponderosa pine primary needles to seperate and simultaneous ozone and PAN exposures. Plant Dis Rep 61:640–644Google Scholar
  7. Edwards GS, Wullschleger SD, Kelly JM (1994) Growth and physiology of northern red oak: Preliminary comparisons of mature tree and seedling responses to ozone. Environ Pollut 83:215–221CrossRefGoogle Scholar
  8. Fialho RC, Bücker J (1996) Changes in levels of foliar carbohydrates and myo-ino-sitol before premature leaf senescence of Populus nigra induced by a mixture of O3 and SO2. Can J Bot 74:965–970CrossRefGoogle Scholar
  9. Fredericksen TS, Joyce BJ, Skelly JM, Steiner KC, Kolb TE, Kouterick KB, Savage JE, Snyder KR (1995) Physiology, morphology, and ozone uptake of leaves of black cherry seedlings, saplings, and canopy trees. Environ Pollut 89:273–283CrossRefGoogle Scholar
  10. Glater RB, Solberg RA, Scott FM (1962) A developmental study of the leaves of Nicotiana glutinosa as related to their smog sensitivity. Am J Bot 49:954–970CrossRefGoogle Scholar
  11. Grulke NE, Miller PR (1994) Changes in gas exchange characteristics during the life span of giant sequoia: implications for response to current and future concentrations of atmospheric ozone. Tree Physiol 14:659–668CrossRefGoogle Scholar
  12. Guderian R (1970) Untersuchungen über quantitative Beziehungen zwischen dem Schwefelgehalt von Pflanzen und dem Schwefeldioxidgehalt der Luft. Z Pflanzenkrh (Pflanzenpathol) Pflanzensch 77, II. Teil 6/70:289–308Google Scholar
  13. Guderian R (1977) Air pollution. Phytotoxicity of acidic gases and its significance in air pollution control. Ecol Stud 22. Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. Guderian R, Tingey DT, Rabe R (1985) Effects of photochemical oxidants on plants. In: Guderian R (Hrsg) Air pollution by photochemical oxidants. Ecol Stud 52. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  15. Guderian R, van Haut H, Stratmann H (1969) Experimentelle Untersuchungen über pflanzenschädigende Fluorwasserstoff-Konzentrationen. Forschungsbericht des Landes NW 2017, Westdeutscher Verlag, KölnGoogle Scholar
  16. Haas JH (1970) Relation of crop maturity to air pollution incited bronzing of Phaseolus vulgaris. Phytopathology 60:407–410CrossRefGoogle Scholar
  17. Hanson PJ, Thorne L, Addis DH (1975) The ozone sensitivity of Petunia hybrida Vilm as related to physiological age. J Am Soc Hort Sci 100:188–190Google Scholar
  18. Hill AC, Heggestad HE, Linzon SN (1970) Ozone. In: Iacobson JS, Hill AC (eds) Recognition of air pollution injury to vegetation: a pictorial atlas. Air Pollut Control Assoc, Pittsburgh, Pa, pp B1–B22Google Scholar
  19. Howell RK, Kremer DF (1972) Ozone injury to soybean cotyledonary leaves. J Environ Qual 1:94–97CrossRefGoogle Scholar
  20. Kasana MS (1991) Sensitivity of three leguminous crops to 0 3 as influenced by different stages of growth and development. Environ Pollut 69:131–149CrossRefGoogle Scholar
  21. Keller T (1988) Growth and premature leaf fall in American aspen as bioindications for ozone. Environ Pollut 52:183–192CrossRefGoogle Scholar
  22. Kolb TE, Fredericksen TS, Steiner KC, Skelly JM (1998) Issues in scaling tree size and age responses to ozone: a review. Environ Pollut 98:195–208CrossRefGoogle Scholar
  23. Kozlowski TT, Constantinidou HE (1986) Environmental Pollution and tree growth, part II. Factors affecting responses to pollution and alleviation of pollution effects. For Abstr 47:105–132Google Scholar
  24. Liebold E, Zimmermann F, Wienhaus O (1996) Die Beziehungen neuartiger Wald-schäden aller Fichtenbestände eines großen Waldgebietes im Mittleren Thüringer Wald zum ökologischen Komplex der Klima-und Bodenfaktoren. Forstwiss Centralbl 116:140–157CrossRefGoogle Scholar
  25. McNulty JB, Newman DW (1961) Mechanism of fluoride induces chlorosis. Plant Physiol 36:385–388CrossRefGoogle Scholar
  26. Mooi J (1984) O3 und ihrer Mischungen auf Pappeln und einige andere Pflanzenarten. Forst Holzw 39:438–444Google Scholar
  27. Noodén LD, Leopold AC (1988) Senescence and aging in plants. Academic Press, San Diego, CaGoogle Scholar
  28. Pääkkönen E, Metsärinne S, Holopainen T, Kärenlampi L (1995) The ozone sensitivity of birch (Betula pendula) in relation to the developmental stage of leaves. New Phytol 132:145–154Google Scholar
  29. Price A, Lucas PW, Lea PJ (1990) Age dependent damage and glutathione metabolism in ozone fumigated barley: a leaf section approach. J Exp Bot 41: 1309–1317CrossRefGoogle Scholar
  30. Rebbeck J, Jensen KF (1993) Ozone effects on grafted mature and juvenile red spruce: photosynthesis, stom atal conductance, and chlorophyll concentration. Can J for Res 23:450–456CrossRefGoogle Scholar
  31. Richards GA, Mulchi CL, Hall JR (1980) Influence of plant maturity on the sensitivity of turfgrass species to ozone. J Environ Qual 9:49–53CrossRefGoogle Scholar
  32. Samuelson LJ, Edwards GS (1993) Acomparison of sensitivity to ozone in seedlings and trees of Quercus robur L. New Phytol 125:373–379CrossRefGoogle Scholar
  33. Samuelson LJ, Kelly JM, Mays PA, Edwards GS (1996) Growth and nutrition of Quercus rubra L seedlings and mature trees after three seasons of ozone exposure. Environ Pollut 91:317–323CrossRefGoogle Scholar
  34. Schmieden U (1997) Forstpflanzenphysiologie. In: Umweltbundesamt (Hrsg) Auswertung der Waldschadensforschungsergebnisse (1982-1992) zur Aufklärung komplexer Ursache-Wirkungsbeziehungen mit Hilfe systemanalytischer Methoden. UBA, Berlin 6/97:15–146Google Scholar
  35. Sutton R, Ting IP (1977) Evidence for the repair of ozone-induced membrane injury. Am J Bot 64:404–411CrossRefGoogle Scholar
  36. Tingey DT, Dunning JA, Jividen GM (1973) Radish root growth reduced by acute ozone exposures. Proc 3rd Int Clean Air Congr, Düsseldorf, VDI, Düsseldorf, S A154–A156Google Scholar
  37. van Haut H (1961) Die Analyse von Schwefeldioxidwirkungen auf Pflanzen im Laboratoriumsversuch. Staub 21:52–56Google Scholar
  38. van Haut H, Stratmann H (1970) Farbtafelatlas über Schwefeldioxid-Wirkungen an Pflanzen. Giradet, EssenGoogle Scholar
  39. Weinstein LH, Alseher-Hermann R (1982) Physiological responses of plants to fluorine. In: Unsworth MH, Ormrod DP (Hrsg) Effects of gaseous air pollution in agriculture and horticulture. Butterworth Scientific, London, S 139–167Google Scholar
  40. Wentzel KF (1963) Waldbauliche Maßnahmen gegen Immissionen. AFZ 18:101–106Google Scholar
  41. Wentzel KF (1968) Empfindlichkeit und Resistenzunterschiede der Pflanzen gegenüber Luftverunreinigungen. Forstarchiv 39(9):189–194Google Scholar
  42. Wienhaus O, Liebold E, Zimmermann F (1994) Beziehungen zwischen Standort, Klima und immissionsbedingten Waldschäden in den Fichtenbeständen der Mittelgebirge. Forst Holz 49:411–415Google Scholar
  43. Younglove T, McCool PM, Musselman RC, Kahl ME (1994) Growth-stage dependent crop yield response to ozone exposure. Environ Pollut 86:287–295CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • R. Guderian
  • H. Braun
  • H.-J. Jäger
  • L. Grünhage
  • J. Bender
  • H. J. Weigel
  • J. Bücker

There are no affiliations available

Personalised recommendations