Quantitative Analysis of Springs

  • Bashir A. Memon


Concern for groundwater resources has increased in the last decade owing to its greater development and use. Strict environmental regulations and growing competition for a limited resource have led to many groundwater investigations. These investigations generally include the determination of aquifer properties, hydraulic conductivity, transmissivity, storativity and leakage, determined primarily by pumping tests. There follows a summarization of quantitative methods that are available to analyze aquifers or aquifer systems hydraulically connected to springs.


Stream Channel Spring Discharge Spring Flow Environmental Isotope Groundwater Runoff 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson TC (1985) Present and future direction in karst hydrogeology. Ann Soc Geol Belgique 108:293–296Google Scholar
  2. Back W, Zötl J (1975) Application of geochemical principles, isotopic methodology, and artificial tracers to karst hydrology. In: Burger A, Dubertret L (eds) Hydrogeology of karstic terrains International Union of Geological Sciences, Series B, 3:105–121Google Scholar
  3. Bakalowicz M (1977) Etude du degre d’organisation des ecoulements souterrains dans les aquiferes carbonates par une methode hydrogeochimique nouvelle. CR Acad Sc Paris, 284D, 2463–2466Google Scholar
  4. Burdon DJ, Papakis N (1963) Handbook of karst hydrogeology. Institute for Geology and Subsurface Research/FAO, AthensGoogle Scholar
  5. Dansgaard WF (1964) Stable isotopes in precipitation. Tellus 16:436–449CrossRefGoogle Scholar
  6. Deutch M, Wiesnet DR, Rango A (1981) Satellite hydrology. Fifth Annual William T. Pecora Memorial Symposium on Remote Sensing, sponsored by AWRA. Technical publication TPS81–1Google Scholar
  7. DeWiest RJM (1965) Geohydrology. John Wiley, New York, 366Google Scholar
  8. Even H, Carmi I, Magaritz M, Gerson R (1986) Timing the transport of water through the upper vadose zone in a karstic system above a cave in Israel. Earth Surf Proc Landf 11:181–191CrossRefGoogle Scholar
  9. Ferris JG, Knowles DB, Brown RH, Stallman RW (1962) Theory of aquifer tests. US Geol Survey Water Supply Paper 1536-E, 174 pGoogle Scholar
  10. Fetter CW Jr (1980) Applied hydrogeology. Charles E Merrill Publishing Co, Columbus, OH, 488 pGoogle Scholar
  11. Fontes J-Ch (1980) Environmental isotopes in groundwater hydrology. In: Fritz P, Fontes J (eds) Handbook of environmental isotope geochemistry. Vol 1:75–140. Elsevier, AmsterdamGoogle Scholar
  12. Fontes J-Ch (1983) Dating of groundwater. In: Guidebook on nuclear techniques in hydrology. Report Series No. 91: 285–317. IAEA, ViennaGoogle Scholar
  13. Ford D, Williams P (1992) Karst geomorphology and hydrology. New York, Chapman and Hall, p 601Google Scholar
  14. Fritz P, Fontes J-Ch (eds; 1980) Handbook of environmental isotope geochemistry. Vol 1: The terrestrial environment. Elsevier, AmsterdamGoogle Scholar
  15. Gerba CP, Wallis C, Melnick JL (1975) Fate of wastewater bacteria and viruses in soil. J Irrig and Drainage Div, Am Soc Civ Eng 101:157–174Google Scholar
  16. Hemphill WR (1958) Small scale photographs in photogeologic interpretation. Photogrammetric Engineering 24(4): 562–567Google Scholar
  17. Hötzl H (1996) Origin of Danube-Aach system. Environmental Geology 27(2):87–96Google Scholar
  18. International Atomic Energy Agency (1981) Stable isotope hydrology. Technical Report Series No. 210. IAEA, ViennaGoogle Scholar
  19. International Atomic Energy Agency (1983) Guidebook on nuclear techniques in hydrology. Technical Reports Series No. 91. IAEA, ViennaGoogle Scholar
  20. International Atomic Energy Agency (1984) Isotope hydrology 1983. IAEA, ViennaGoogle Scholar
  21. Issar A, Quijana JL, Gat JR, Castro M (1984) The isotope hydrology of the groundwaters of central Mexico. J Hydrol 71:201–224CrossRefGoogle Scholar
  22. Käss W (1967) Erfahrungen mit Uranin bei Farbversuchen. Steir Beitr z Hydrogeologie 18/19:123–340Google Scholar
  23. Käss W (1969) Schriftum zur Versickerung der oberen Donau zwischen Immendingen und Fridingen (Südwestdeutschland). Steir Beitr Hydrogeol 21:215–246Google Scholar
  24. Knop A (1878) Über die hydrographischen Beziehungen zwischen der Donau und der Aachquelle im badischen Oberlande. Neues Jahrb Mineral Geol Petrogr 1978:350–363Google Scholar
  25. Lallemand A, Grison G (1970) Contribution à la sélection de traceurs radioactifs pour l’hydrologie. Isotopes in hydrology, Proc Symp 833–9. IAEA, ViennaGoogle Scholar
  26. LaMoreaux PE (1991) History of karst hydrogeological studies. Proceedings of International Conference on Environmental Changes in Karst Areas. International Geological Union/Union International Sciences, Italy, pp. 215–229Google Scholar
  27. LaMoreaux PE, Hughes TH, Memon BA, Lineback N (1989) Hydrogeologie assessment - Figeh Spring, Damascus, Syria. Environmental Geology and Water Sciences 13(2)77Google Scholar
  28. Lloyd JW (1981) Environmental isotopes in groundwater. In: Lloyd JW (ed) Case-studies in groundwater resources evaluation. Clarendon, Oxford, 113–132Google Scholar
  29. Maillet E (1905) Essais d’hydraulique souterraine et fluviale. Hermann, ParisGoogle Scholar
  30. Meinzer OE (1923) The occurrence of groundwater in the United States, with a discussion of principles. Department of the Interior, US Geological Survey Water Supply Paper 489, Washington DCGoogle Scholar
  31. Meinzer OE (1927) Large springs in the United States. US Geological Survey Water-Supply Paper 557, Government Printing Office, Washington 94 pGoogle Scholar
  32. Memon BA (1995) Quantitative analysis of springs. Environmental Geology 26:111–120Google Scholar
  33. Morrison A, Chown MC (1964) Photography of the Western Sahara Desert from the Mercury MA-4 Space Craft. US National Aeronautics and Space Administration Report CR-126Google Scholar
  34. Newton JG (1976) Early detection and correction of sinkhole problems in Alabama, with a preliminary evaluation of remote sensing applications. Alabama Highway Department, Bureau Research and Development, Research Report No. HPR-76, 83 pGoogle Scholar
  35. Powell WJ, Copeland CW, Drahovzal JA (1970) Delineation of linear features and application to reservoir engineering using Apollo 9 multispectral photography. Alabama Geological Survey Information Series 41, 37 pGoogle Scholar
  36. Romero JC (1970) The movement of bacteria and virus through porous media. Groundwater 8(2):37–48Google Scholar
  37. Rozanski K, Florkowski T (1979) Krypton-85 dating of groundwater. Isotope hydrology 1978. Proc Symp Neuherberg 1978, Vol. 2, p. 949. IAEA, ViennaGoogle Scholar
  38. Salvamoser J (1984) Krypton-85 for groundwater dating. Isotope hydrology 1983:831–932. IAEA, ViennaGoogle Scholar
  39. Shuster ET, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: A possible means of characterisizing carbonate aquifers. J Hydrol 14: 93–128CrossRefGoogle Scholar
  40. Siegenthaler U, Schotterer U, Muller I (1984) Isotopic and chemical investigations of springs from different karst zones in the Swiss Jura. Isotope hydrology 1983:153–172. IAEA, ViennaGoogle Scholar
  41. Smart CC (1983a) Hydrology of a glacierised alpine karst. PhD Thesis, McMaster UniversityGoogle Scholar
  42. Smart CC (1983b) The hydrology of Castleguard Karst, Columbia Icefields, Alberta, Canada. Arctic and Alpine Res 15(4)741–786CrossRefGoogle Scholar
  43. Smart PL, Brown MC (1973) The use of activated carbon for the detection of the tracer dye Rhodamine WT. Proc 6 Internat Speleo Cong Olomouc, CSSR, Vol. 4:285–292Google Scholar
  44. Smart PL, Freiderich H (1982) An assessment of the methods and results of water-tracing experiments in the Gunung Mulu National Park, Sarawak. Trans Brit Cave Res Assoc 9(2):199–212Google Scholar
  45. Theis CV (1935) The relation between the lowering of piezometric surface and the duration of discharge of a well using groundwater storage. Am Geophysical Union TransGoogle Scholar
  46. White, WB (1988) Geomorphology and hydrology karst terrains. Oxford University Press, New York, 464Google Scholar
  47. Wilson JF (1968) Fluorometric procedures for dye tracing. Techniques of water resources investigations of the United States Geological Survey TWI 03-A12, pp 31, Washington DCGoogle Scholar
  48. Wilson JF, Cobb ED, Kilpatrick FA (1986) Fluorometric procedures for dye tracing. Techniques of water resources investigation, 03-A12, US Geol Survey, pp 34, Washington DCGoogle Scholar
  49. Yonge CJ, Ford DC, Gray J, Schwarcz HP (1985) Stable isotope studies of cave seepage water. Chem Geol 58: 97–105CrossRefGoogle Scholar
  50. Yurtsever Y (1983) Models for tracer data analysis. In: Guidebook on nuclear techniques in hydrology. Technical Report Series No. 91:381–402. IAEA, ViennaGoogle Scholar
  51. Zheng Y, Bai E, Libra R, Rowden R, Liu H (1996) Simulation of spring discharge from a limestone aquifer in Iowa, USA. Hydrogeology Journal 4(4):41–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Bashir A. Memon

There are no affiliations available

Personalised recommendations