Skip to main content

Bone Circulation and Effects of Experimental Interventions

  • Chapter
Practice of Intramedullary Locked Nails

Abstract

Much of the research into the osseous circulation has centred on the long bones of the appendicular skeleton. The evidence gathered from human bone suggests that its vascularity has much in common with the blood supply of mammalian bone. Across the species, there are similar distinctive vascular patterns in the disparate parts of a long bone: in the diaphysis, metaphysis, epiphysis, cortex and marrow, subarticular and juxtaepiphyseal regions. The vascular character of living bone focuses the mind on the microcirculation as an indispensable factor in the production of bone substance, the regulation of bone metabolism and the repair of bone fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amprino R (1955) Struttura microscopica e rinnovamente delle ossa. Atti Soc Ital Patol 4:9–68

    Google Scholar 

  2. Amprino R, Bairatti A (1936) Processi di ricostruzione e di riassorbimento nella sostanza compatta delle ossa dell’uomo. Z Zellforsch Mikrosk Anat 24:439–511

    Article  Google Scholar 

  3. Amprino R, Sisto L (1946) Analogies et différences de structure dans les différentes régions d’un même os. Acta Anat 2:202–214

    Article  Google Scholar 

  4. Arnoldi CC (1994) Vascular aspects of degenerative bone disorders. Acta Orthopaedica Scandinavica Suppl  261:65, 1–82

    Google Scholar 

  5. Ashe P, Loutit JF, Townsend KM (1980) Osteoclasts derived from haematopoietic stem cells. Nature 283:669–670

    Article  Google Scholar 

  6. Bickle DD, Stesin A, Halloran B, Steinbach L, Recker R (1993) Alcohol-induced bone disease: relationship of age and parathyroid levels. Alcohol Clin Exp Res 17:690–695

    Article  Google Scholar 

  7. Bachmann G, Pfeifer T, Spies H, Katthagen BD (1993) 3D-CT and angiography of cast preparations of pelvic vessels: demonstration of arterial blood supply of the acetabulum. ROFO 158:214–220

    Article  PubMed  CAS  Google Scholar 

  8. Bridgeman G, Brookes M (1996) Blood supply to the human femoral diaphysis in youth and senescence. J Anat 188:611–621

    PubMed  Google Scholar 

  9. Brookes M (1958a) The vascular architecture of tubular bone in the rat. Anat Rec 132:25–47

    Article  Google Scholar 

  10. Brookes M (1958b) The vascularization of long bones in the human foetus. J Anat 92:261–267

    Google Scholar 

  11. Brookes M (1960a) The vascular reaction of tubular bone to ischaemia in peripheral occlusive vascular disease. J Bone Joint Surg Br 42:110–125

    Google Scholar 

  12. Brookes M (1960b) Sequelae of experimental partial ischaemia in long bones of the rabbit. J Anat 94:552–561

    Google Scholar 

  13. Brookes M (1970) Arteriolar blockade: a method of measuring blood flow rates in the skeleton. J Anat 106:557–563

    PubMed  CAS  Google Scholar 

  14. Brookes M (1971) The blood supply of bone: an approach to bone biology. Butterworth, London

    Google Scholar 

  15. Brookes M (1986) An anatomy of the osseous circulation. Bone 3:32–35

    Google Scholar 

  16. Brookes M (1990) Blood flow in the diaphysis of long bones. ARCO (Toulouse) News Letter 2:75–85

    Google Scholar 

  17. Brookes M (1993) Morphology and distribution of blood vessels and blood flow in bone. In: Schoutens A et al. (eds) Bone circulation and vascularization in normal and pathological conditions. Plenum Press, New York pp 19–28

    Chapter  Google Scholar 

  18. Brookes M, Harrison RG (1957) The vascularization of the rabbit femur and tibiofibula. J Anat 91:61–72

    PubMed  CAS  Google Scholar 

  19. Brookes M, Revell WJ (1998) Blood supply of bone: scientific aspects. Springer, London

    Book  Google Scholar 

  20. Brookes M, Richards DJ, Singh M (1970) Vascular sequelae of experimental osteotomy. Angiology 21:355–367

    Article  PubMed  CAS  Google Scholar 

  21. Brueton RN, Revell WJ, Brookes M (1993) Haemodynamics of bone healing in a model stable fracture. In: Schoutens A et al. (eds) Bone circulation and vascularization in normal and pathological conditions. Plenum Press, New York, pp 121–128

    Chapter  Google Scholar 

  22. Charkes ND, Brookes M, Makler PT (1979) Studies of skeletal tracer kinetics: II. Evaluation of a 5-compartment model of [18F] fluoride kinetics in rats. J Nuc Med Tech 20:1150–1157

    CAS  Google Scholar 

  23. Charkes ND, Makler PT, Brookes M (1980) Radiofluoride kinetics. In: Colombetti LG (ed) Principles of radiopharmacology. CRC Press, Boca Raton, Florida, pp 225–242

    Google Scholar 

  24. Cohen J, Harris WH (1958) The three-dimensional anatomy of haversian systems. J Bone Joint Surg Am 40:419–434

    PubMed  Google Scholar 

  25. Crock HV (1967) The blood supply of the lower limb bones in man. Livingstone, London

    Google Scholar 

  26. Cumming JD, Nutt ME (1962) Bone marrow blood flow and cardiac output in the rabbit J Physiol 162:30–34

    PubMed  CAS  Google Scholar 

  27. Daftari TK, Whitesides TE, Heller JG, Goodrich AC, McCarey BE (1994) Nicotine in the revascularisation of bone graft. An experimental study in rabbits. Spine 19:904–911

    Article  PubMed  CAS  Google Scholar 

  28. De Marneffe R (1951) Recherches morphologiques et expérimentales sur la vascularisation osseuse. Brussels: Acta Med Belg Supp:7–80.

    Google Scholar 

  29. Dillaman RM (1984) Movement of ferritin in the 2-day-old chick femur. Anat Ree 209:445–453

    Article  CAS  Google Scholar 

  30. Dillaman RM, Roer RD, Gay DM (1991) Fluid movement in bone: theoretical and empirical. J Biomech 24 (suppl 1):163–177

    Article  PubMed  Google Scholar 

  31. Dohler JR, Hennig FF, Hughes SP (1995) Reactivity of cortical bone capillaries. Functional TEM analysis with adrenalin, ATP and insulin. Langenbecks Arch Chir 380:176–183

    Article  PubMed  CAS  Google Scholar 

  32. Gebhardt W (1901) Ueber funktionell wichtige Anordnungsweisen der grösseren und feineren Bauelemente des Wirbeltierknochens. Arch Entw-Mech Org 11:383–498

    Google Scholar 

  33. Grégoire R, Carrière C (1921) Circulation artérielle intra-osseuse du fémur et du tibia. CR Assoc Anat 16:179–185

    Google Scholar 

  34. Gunst MA (1980) Interference with bone blood supply through plating of intact bone. In: Uhthoff HK (ed) Current concepts of internal fixation of fractures. Springer, Berlin, pp 268–276

    Google Scholar 

  35. Ham AW, Leeson TS (1964) Ham’s histology, 4th ed. Lippincott, New York

    Google Scholar 

  36. Hansen ES (1993) Microvascularization, osteogenesis and myelopoiesis in normal and pathological conditions. In: Schoutens A, Arlet J, Gardeniers J, Hughes S (ed) Bone circulation and vascularization. Plenum, London, pp 229–242

    Google Scholar 

  37. Heřt J, Hladíková J (1961) Die Gefässversorgung des Haversschen Knochens. Acta Anat 45:344–361

    Article  PubMed  Google Scholar 

  38. Holthofer H, Virtanen I, Kariniemi AL, Hormia H, Linder E, Miettinen A (1982) Ulex europeus I lectin as a marker for vascular endothelium in human tissues. Lab Invest 47:60–66

    PubMed  CAS  Google Scholar 

  39. Hover H (1882) A silver nitrate gelatin mass. Biol Centralbl ii:19–22

    Google Scholar 

  40. Johnston TB, Davies DV, Davies F (1958) Grays Anatomy.32 nd edn Longmans, London

    Google Scholar 

  41. Kapitola J, Andrie J, Kubickova J (1994) Possible participation of prostaglandins in the increase in the bone blood flow in oophorectomized female rats. Exp clin endocrinol 102:414–416

    Article  PubMed  CAS  Google Scholar 

  42. Katthagen BD, Spies H, Bachmann G (1995) Arterial vascularization of the bony acetabulum. Z Orthop 133:7–13

    Article  PubMed  CAS  Google Scholar 

  43. Kelly PJ (1973) Comparison of marrow and cortical bone blood flow by 125-labeled 4-iodoantipyrine(l-Ap) washout. J Lab Clin Med 81:497–505

    PubMed  CAS  Google Scholar 

  44. Kita K, Kawai K, Hirohata K (1987) Changes in bone marrow blood flow with aging. J Orthop Res 5:569–575

    Article  PubMed  CAS  Google Scholar 

  45. Ko JS, Bernard GW (1981) Osteoclast formation in vitro from bone marrow mononuclear cells in osteoclast-free bone. Am J Anat 161:415–425

    Article  PubMed  CAS  Google Scholar 

  46. Lamas A, Amado D, da Costa JC (1946) La circulation du sang dans l’os. Presse Med 54:862–863

    Google Scholar 

  47. Langer K (1876) Über das Gefässsystem der Röhrenknochen, mit Beiträgen zur Kenntnis des Baues und der Entwicklung des Knochengewebes. Denkschr K K Akad Wiss Wien 37:217–240

    Google Scholar 

  48. Leonhardt H (1967) Histologie und Zytologie des Menschen. Thieme, Stuttgart

    Google Scholar 

  49. Lopez-Curto JA, Bassingthwaite JB, Kelly PJ (1980) Anatomy of the microvasculature of the tibial diaphysis of the adult dog. J Bone Joint Surg Am 62:1362–1369

    PubMed  CAS  Google Scholar 

  50. Michelson K (1969) Haemodynamics in the bone marrow of anaemic rabbits with increased haematopoiesis. Acta Physiol Scand 77:52–57

    Article  Google Scholar 

  51. Montgomery RJ, Sutker BD, Bronk JT, Kelly PJ (1988) Interstitial fluid flow in cortical bone. Microvasc Res 35:295–307

    Article  PubMed  CAS  Google Scholar 

  52. Nelson GE, Kelly PJ, Peterson LFA, Janes JM (1960) Blood supply of the human tibia. J Bone Joint Surg Am 42:625–634

    PubMed  Google Scholar 

  53. Nilsonne U (1959) Biophysical investigations of the mineral phase in healing fractures. Acta Orthop Scand Suppl 37:1–81

    PubMed  CAS  Google Scholar 

  54. Okubo M, Kinoshita M, Yukimura T, Abe Y, Shimazu A (1979) Experimental study of measurement of regional blood flow in the adult mongrel dog using radioactive microspheres. Clin Orthop Rel Res 138:263–270

    Google Scholar 

  55. Oni OA, Dearing S, Pringle S (1993) Endothelial cells and bone cells. In: Schoutens A (ed) Bone Circulation and Vascularization in Normal and Pathological Conditions. Plenum Press, London, pp 43–48

    Chapter  Google Scholar 

  56. Peterson LFA, Neher M, Janes JM, Kelly PJ (1959) A stereoscopic microradiographic camera with vacuum filmholder and a stereomicroscope. Proc Staff Meet Mayo Clin 34:283

    PubMed  CAS  Google Scholar 

  57. Petrakis NL (1954) Bone marrow pressure in leukaemic and non-leukaemic patients. J Clin Invest 33:27–35

    Article  PubMed  CAS  Google Scholar 

  58. Polster J (1970) Zur Haemodynamik des Knochens. Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  59. Pommer G (1927) Ueber Begriff und Bedeutung der durchbohrenden Knochenkanäle. Z Mikrosk Anat Forsch 9:540–584

    Google Scholar 

  60. Pringle S, De Bono DP (1988) Monoclonal antibodies to damaged and regenerating vascular endothelium. J Clin Lab Immunol 26:159–162

    PubMed  CAS  Google Scholar 

  61. Ramseier E. (1962) Untersuchungen über arteriosklerotische Veränderungen der Knochenarterien. Virchows Arch Pathol Anat 336:77–86

    Article  Google Scholar 

  62. Ranvier L (1875) Traité technique d’histologie. Savy, Paris

    Google Scholar 

  63. Rhinelander FW (1968) The normal microcirculation of diaphyseal cortex and its response to fracture. J Bone Joint Surg Am 50:784–800

    PubMed  CAS  Google Scholar 

  64. Rhinelander FW (1980) Vascular proliferation and blood supply during fracture healing. In: Uhthoff HK (ed) Current concepts of internal fixation of fractures. Springer, Berlin, pp 9–14

    Google Scholar 

  65. Richards DJ, Brookes M (1969) Physicochemical sequelae of experimental osteotomy. Calc Tiss Res 2[Suppl]:93

    Google Scholar 

  66. Recommendations of the International Commission on Radiological Protection (1975) Report of the task group on reference man (vol 23). Pergamon Press, New York

    Google Scholar 

  67. Schenk R, Willenegger H (1964) Zur Histologie der primären Knochenheilung. Langenbecks Arch Klin Chir 308:440–452

    CAS  Google Scholar 

  68. Schumacher S (1935) Zur Anordnung der Gefäßkanäle in der Diaphyse langer Röhrenknochen des Menschen. Z Mikrosk Anat Forsch 38:145–160

    Google Scholar 

  69. Schwann T (1839) Mikroscopische Untersuchungen über die Uebereinstimmung in der Struktur und dem Wachstum der Thiere und Pflanzen. Sander, Berlin

    Google Scholar 

  70. Servelle M (1948) Stase veineuse et croissance osseuse. Bull Acad Nat Med 132:471–474

    Google Scholar 

  71. Skawina A, Litwin JA, Gorczyca J, Miodonski AJ (1994) The vascular system of human fetal long bones; a scanning electron microscope study of corrosion casts. J Anat 185:369–376

    PubMed  Google Scholar 

  72. Smith JW (1960) Collagen fibre patterns in mammalian bone. J Anat 94:329–344

    PubMed  CAS  Google Scholar 

  73. Soulié A (1904) Sur les applications de la radiographie stéréoscopique à l’étude des artères des os. (Note technique.) CR Assoc Anat 6:172–174

    Google Scholar 

  74. Steinbach HL, Jergeson F, Gilfillan RS, Petrakis NL (1957) Osseous phlebography. Surg Gynecol Obstet Am 40:215–226

    Google Scholar 

  75. Testut L (1880) Vaisseaux et nerfs du tissu conjonctif fibreux et osseux; anatomie et physiologie. Thèse d’agrégation

    Google Scholar 

  76. Thiersch K (1865) Thiersch Graft: lead chromate for perfusion. Arch Mikrosk Anat 149

    Google Scholar 

  77. Trias A, Fery A (1979) Cortical circulation of long bones. J Bone Joint Surg Am 61:1052–1059

    PubMed  CAS  Google Scholar 

  78. Trueta J (1963) The role of the vessels in osteogenesis. J Bone Joint Surg Br 45:402–418

    Google Scholar 

  79. Trueta J (1968) Studies of the development and decay of the human frame. Heinemann, London

    Google Scholar 

  80. Uhthoff HK, Dubuc FL (1971) Bone structure in the dog under rigid internal fixation. Clin Orthop Rel Res 81:165–170

    Article  CAS  Google Scholar 

  81. von Leydig F (1856) Histologie des Menschen und der Thiere, von Meidinger Verlag, Frankfort-am-Main

    Google Scholar 

  82. Walker RA (1985) Ulex europeus I-peroxidase as a marker of vascular endothelium: its application in routine histo-pathology. J Pathol 146:123–127

    Article  PubMed  CAS  Google Scholar 

  83. Weidenreich F (1923) Knochenstudien. I. Teil. Ueber Aufbau und Entwicklung des Knochens und den Charakter des Knochengewebes. A Anat EntwGesch 69:382–466

    Article  Google Scholar 

  84. Weidenreich F (1930) Das Knochengewebe. In: von Möllendorf W (ed) Handbuch der mikroskopischen Anatomie des Menschen (2nd series, part 2) Springer, Berlin

    Google Scholar 

  85. White NB, Ter-Pogossian MM, Stein AH (1964) A method to determine the rate of blood flow in bone and selected soft tissues. Surg Gynec Obstet 119:535–540

    PubMed  CAS  Google Scholar 

  86. Wilkes CH, Visscher MB (1975) Some physiological aspects of bone marrow pressure. J Bone Joint Surg Am 57:49–63

    PubMed  CAS  Google Scholar 

  87. Young RW (1962) Cell proliferation and specialization during endochondral osteogenesis in young rats. J Cell Biol 14:357–370

    Article  PubMed  CAS  Google Scholar 

  88. Zawisch-Ossenitz C (1926) Histologische Untersuchungen über Gefässeinschluss und Gefässentwicklung im knochen. Z Mikrosk Anat Forsch 6:76–161

    Google Scholar 

  89. Zawisch-Ossenitz C (1927) Ueber Begriff und Bedeutung der durchbohrenden Knochenkanäle. Z Mikrosk Anat Forsch 9:585–606

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brookes, M. (2002). Bone Circulation and Effects of Experimental Interventions. In: Kempf, I., Leung, K.S., Grosse, A., Haarman, H.J.T.M., Seidel, H., Taglang, G. (eds) Practice of Intramedullary Locked Nails. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56330-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56330-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62961-7

  • Online ISBN: 978-3-642-56330-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics