Skip to main content

Wirkungsmechanismus von Valproinsäure: Neurophysiologische Aspekte

  • Chapter
Valproinsäure
  • 85 Accesses

Zusammenfassung

Valproinsäure (valproic acid, VPA)besitzt in den von uns untersuchten In-vitroEpilepsiemodellen von allen klinisch verwendeten Antikonvulsiva das relativ weiteste Wirkspektrum. VPA beeinflusst die Erregungsbildung an Nervenzellen sowohl über eine nutzungsabhängige Blockade von Natriumströmen wie durch eine Blockade der T-Kalziumströme. Darüber hinaus steigert VPA die Synthese von GABA und reduziert die Bildung von Aspartat. Damit ist VPA ähnlich wie die meisten anderen klinisch verwendeten anfallsunterdrückenden Substanzen keine sehr spezifisch wirkende Substanz. Die nachgewiesenen Wirkungen von VPA sind aber vereinbar mit dem breiten Wirkspektrum von VPA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Avoli M (1986) Inhibitory potentials in neurons of the deep layers of the in vitro neocortical slice. Brain Res 370:65–170

    Article  Google Scholar 

  • Coulter DA, Huguenard JR, Prince DA (1989) Specific petit mal anticonvulsants reduce calcium currents in thalamic neurons. Neurosci Lett 98:74–78

    Article  PubMed  CAS  Google Scholar 

  • Coulter DA, Huguenard JR, Prince DA (1990a) Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: Calcium current reduction. Br J Clin Pharmacol 1oo:800–806

    Google Scholar 

  • Coulter DA, Huguenard JR, Prince DA (1990b) Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: GABA current blockade. Br J Clin Pharmacol 100:807–813

    Article  CAS  Google Scholar 

  • Dreier JP, Heinemann U (1990) Late low magnesium-induced epileptiform activity in rat entorhinal cortex slices becomes insensitive to the anticonvulsant valproic acid. Neurosci Lett 119:68–70

    Article  PubMed  CAS  Google Scholar 

  • Franceschetti S, Hamon B, Heinemann U (1986) The action of valproate on spontaneous epileptiform activity in absence of synaptic transmission and on evoked changes in [Ca2+]o in the hippocampal slice. Brain Res 386:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hablitz JJ, Heinemann U (1987) Extracellular K+ and Ca2+ changes during epileptiform discharges in the immature rat neocortex. Dev Brain Res 36:299–303

    Article  CAS  Google Scholar 

  • Hablitz JJ, Heinemann U (1989) Alterations in the microenvironment during spreading depression associated with epileptiform activity in the immature neocortex. Dev Brain Res 46:243–252

    Article  CAS  Google Scholar 

  • Heinemann U, Franceschetti S, Hamon B, Konnerth A, Yaari Y (1985) Effects of anticonvulsants on spontaneous epileptiform activity which develops in the absence of chemical synaptic transmission in hippocampal slices. Brain Res 325:349–352

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U (1987) Basic mechanisms of the epilepsies. In: Halliday AM, Butler SR, Paul R (eds) A textbook of clinical neurophysiology. Wiley & Sons, Chichester New York Brisbane Toronto Singapore, pp 497–534

    Google Scholar 

  • Heinemann U, Stabel J, Rausche G (1990) Activity-dependent ionic changes and neuronal plasticity in rat hippocampus. In: Storn-Mathisen J, Zimmer J, Ottersen OP (eds) Progress in Brain Research, vol 83. Elsevier Science, pp 197–214

    Google Scholar 

  • Heinemann U, Jones RSG (1991) Neurophysiology. In: Gram L, Dam M (eds) Comprehensive Epileptology. Raven Press, New York, pp 172

    Google Scholar 

  • Jahnsen H, Llinás RR (1984) Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol (Lond) 349:227–247

    CAS  Google Scholar 

  • Jones RSG, Heinemann U (1987) Abolition of the orthodromically evoked IPSP of CA1 pyramidal cells before the EPSP during washout of calcium from hippocampal slices. Exp Brain Res 65:676–680

    PubMed  CAS  Google Scholar 

  • Kelly KM, Gross RA, Macdonald RL (1990) Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. Neurosci Lett 116:233–238

    Article  PubMed  CAS  Google Scholar 

  • Konnerth A, Heinemann U, Yaari Y (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro: I. Development of seizurelike activity in low extracellular calcium. J Neurophysiol 56:409–423

    PubMed  CAS  Google Scholar 

  • Kostopoulos G, Avoli M, Pellegrini A, Gloor P (1982) Laminar analysis of spindles and of spikes of the spike and wave discharge of feline generalized penicillin epilepsy. Electroenc Clin Neurophysiol 53:1–13

    Article  CAS  Google Scholar 

  • Kostopoulos G, Avoli M, Gloor P (1983) Participation of cortical recurrent inhibition in the genesis of spike and wave discharges in feline generalized penicillin epilepsy. Brain Res 267:101–112

    Article  PubMed  CAS  Google Scholar 

  • Lee KS, Schubert P, Heinemann U (1984) The anticonvulsive action of adenosine: a postsynaptic, dendritic action by a possible endogenous anticonvulsant. Brain Res 321:160–164

    Article  PubMed  CAS  Google Scholar 

  • Lux HD, Heinemann U, Dietzel I (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. In: Delgado-Escueta Ay, Ward AA, Woodbury DM, Porter RJ (eds) Advances in Neurology Vol. 44. Basic mechanisms of epilepsies: Molecular and cellular approaches. Raven, New York, pp 619–639

    Google Scholar 

  • Macdonald RL, Barker JL (1979) Enhancement of GABA-mediated postsynaptic inhibition in cultured mammalian spinal cord neurons: Common mode of anticonvulsant action. Brain Res 167:323–336

    Article  PubMed  CAS  Google Scholar 

  • Macdonald RL, Bergey GK (1979) Valproic acid augmants GABA-mediated postsynaptic inhibition in cultured mammalian neurons. Brain Res 170:558–562

    Article  PubMed  CAS  Google Scholar 

  • Macdonald RL, McLean MJ (1986) Anticonvulsant drugs: mechanisms of action. In: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Advances in neurology, vol. 44. Basic mechanisms of the epilepsies. Raven, New York, pp 713–736

    Google Scholar 

  • Mody I, Lambert JDC, Heinemann U (1987) Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. J Neurophysiol 57, No.3:869–888

    PubMed  CAS  Google Scholar 

  • Müller W, Misgeld U, Heinemann U (1988) Carbachol effects on hippocampal neurons in vitro: Dependence on the rate of carbachol tissue concentration. Exp Brain Res 72:287–298

    Article  PubMed  Google Scholar 

  • Olpe H-R, Steinmann MW, Pozza MF, Brugger F, Schmutz M (1988) Valproate enhances GABA-A mediated inhibition of locus coeruleus neurones in vitro. Naunyn-Schmiedeberg’s Arch Pharmacol 338:655–657

    Article  CAS  Google Scholar 

  • Prince DA (1978) Neurophysiology of epilepsy. Ann Rev Neurosci 1:395–415

    Article  PubMed  CAS  Google Scholar 

  • Pumain R, Menini C, Heinemann U, Silvat-Barrat C, Louvel J (1985) Chemical synaptic transmission is not necessary for epileptic activity to persist in the neocortex of the photosensitive baboon. Exp Neurol 89:250–258

    Article  PubMed  CAS  Google Scholar 

  • Rose GM, Olpe H-R, Haas HL (1986) Testing of prototype antiepileptics in hippocampal slices. Naunyn-Schmiedeberg’s Arch Pharmacol 332:89–92

    Article  CAS  Google Scholar 

  • Stanton PK, Jones RSG, Mody I, Heinemann U (1987) Epileptiform activity induced by lowering extracellular [Mg++] in combined hippocampal-entorhinal cortex slices: modulation by receptors for Norepinephrine and N-methyl-D-aspartate. Epilepsy Res 1:53–62

    Article  PubMed  CAS  Google Scholar 

  • Traynelis SF, Dingledine R (1988) Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 59:259–276.

    PubMed  CAS  Google Scholar 

  • Walther H, Lambert JDC, Jones RSG, Heinemann U, Hamon B (1986) Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium. Neursci Lett 69:156–161

    Article  CAS  Google Scholar 

  • Wong RKS, Traub RD, Miles R (1986) Cellular basis of neuronal synchrony in epilepsy. In: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Advances in neurology, vol. 44. Basic mechanisms of the epilepsies. Raven, New York, pp 583–592

    Google Scholar 

  • Yaari Y, Konnerth A, Heinemann U (1983) Spontaneous epileptiform activity of CAi hippocampal neurons in low extracellular calcium solutions. Exp Brain Res 51:153–156

    Article  PubMed  CAS  Google Scholar 

  • Yaari Y, Konnerth A, Heinemann U (1986) Nonsynaptic epileptogenesis in the mammalian hip-pocampus in vitro. II. Role of extracellular potassium. J Neurophysiol 56:424–438

    PubMed  CAS  Google Scholar 

  • Yamamoto C (1972) Intracellular studies of seizure-like afterdischarges elicited in thin hippo-campal sections in vitro. Exp Neurol 35:154–164

    Article  PubMed  CAS  Google Scholar 

  • Zona C, Avoli M (1990) Effects induced by the antiepileptic drug valproic acid upon the ionic currents recorded in rat neocortical neurons in cell culture. Exp Brain Res 81:313–317

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heinemann, U., Dreier, J., Stabel, J., Zhang, C.L., Leschinger, A., Ficker, E. (2002). Wirkungsmechanismus von Valproinsäure: Neurophysiologische Aspekte. In: Krämer, G., Walden, J. (eds) Valproinsäure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56329-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56329-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63068-2

  • Online ISBN: 978-3-642-56329-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics