Weathering and Soil Formation

  • H.-P. Blume
  • L. Beyer
  • E. Kalk
  • D. Kuhn
Part of the Ecological Studies book series (ECOLSTUD, volume 154)


In the coastal regions of Antarctica, soil formation occurs to a greater extent than previously thought (Blume et al. 1997; Beyer et al. 1999). Soil formation can be found in accordance with humid climate conditions, as physical and chemical weathering which results in acidification, brownification, clay formation, organic matter accumulation, as well as partial podzolisation and redoximorphism. Such phenomena have been described during studies of soils at Wilkes Land near Casey Station (Blume and Bölter 1993; Beyer et al. 1998; Blume et al., Chap. 7), and at King George Island near Arctowski Station (Kuhn 1997; Blume et al., Chap. 7). In contrast, soils of the cold deserts of the Ross Sea section are characterised only by physical weathering in combination with an accumulation of carbonates and salts, but there is nearly no humus accumulation (Campbell and Claridge l987; Bockheim and Ugolini 1990; Beyer et al. 1999). In recent reviews some more chemical and mineralogical data of representative soils have been given (Blume et al., Chap 7). This contribution discusses the main reasons for soil formation in Antarctic areas.


Depth Function Clay Fraction Soil Formation Antarctic Soil Ornithogenic Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beyer L, Sorge C, Blume H-P, Schulten H (1995) Soil organic matter composition and transformation in gelic Histosols of coastal continental Antarctica. Soil Biol Biochem 27:1279–1288CrossRefGoogle Scholar
  2. Beyer L, Blume H-P, Knicker H, Bölter M (1997) Soil organic matter of suggested spodic horizons in relic ornithogenic soils of coastal Continental Antarctica (Casey Station, Wilkes Land) and spodic horizons in soils of Germany. Soil Sci 162:518–527CrossRefGoogle Scholar
  3. Beyer L, Pingpank K, Bölter M, Seppelt RD (1998) Small-distance variation of carbon and nitrogen in mineral Antarctic Cryosols near Casey Station (Wilkes Land). Z Pflanzenernähr Bodenk 161:211–220CrossRefGoogle Scholar
  4. Beyer L, Bockheim JG, Campbell IB, Claridge, GGC (1999) Genesis, properties and sensitivity of Antarctic Gelisols. Antarct Sci 11:387–398CrossRefGoogle Scholar
  5. Beyer L, Bölter M (1999) Formation, ecology, and geography of Cryosols of an ice-free oasis in coastal East Antarctica near Casey Station, (Wilkes Land). Aust J Soil Res 37:209–244CrossRefGoogle Scholar
  6. Beyer L, Bölter M (2000) Chemical and biological properties, formation, occurrence and classification of Spodic Cryosols in a terrestrial ecosystem of East Antarctica (Wilkes Land). Catena 39:95–119CrossRefGoogle Scholar
  7. Birkenmajer K (1980) Geology of Admiralty Bay, King George Island (South Shetland Islands, Antarctica). An outline. Pol Polar Res 1:29–54Google Scholar
  8. Blight DL, Oliver RL (1977) The metamorphic geology of the Windmill Islands, Antarctica. J Geol Soc Aust 24:239–262CrossRefGoogle Scholar
  9. Blume H-P (1994) Soils of Casey, Antarctica. 15th World Congr Soil Sci AcapulcoTransact 6b, pp 382–383Google Scholar
  10. Blume H-P, Alaily F, Smettan U, Zielinski G (1984) Soil types and associations of SW Egypt. Berl Geowiss Abh (A) 50:293–302Google Scholar
  11. Blume H-P, Beyer L, Bölter M, Erlenkeuser H, Kalk E, Kneesch S, Pfisterer U, Schneider D (1997) Pedogenic zonation in soils of the southern circumpolar region. Adv GeoEcol 30:69–90Google Scholar
  12. Blume H-P, Bölter M (1993) Soils of Casey Station (Wilkes Land, Antarctica). In: Gilichinski D (ed) Joint Russion-American seminar on cryopedology and global change. Post-Sem Proc 1st Intern Conf. on Cryopedology 1992. Russian Academy of Sci., Pushchino, pp 96–103Google Scholar
  13. Blume H-P, Bölter M (1996) Wechselwirkungen zwischen Boden-und Vegetationsentwicklung in der kontinentalen Antarktis. Verh Ges Ökol 25:25–34Google Scholar
  14. Bockheim J (1993) Global change and soil formation in the Antarctic region. In: Gilichinski D (ed) Post-Sem Proc 1st Int Conf Cryopedol, Russian Academy of Science; Pushchino, pp 132–140Google Scholar
  15. Bockheim J (1995) Permafrost distribution in the Southern circumpolar region and its relation to the environment. Permafrost Periglacial Process 6:27–45CrossRefGoogle Scholar
  16. Bockheim J, Ugolini F (1990) A review of pedogenic zonation in well-drained soils of the Southern circumpolar region. Quat Res 34:47–66CrossRefGoogle Scholar
  17. Bölter M (1992) Environmental conditions and microbiological properties from soils and lichens from Antarctica (Casey Station, Wilkes Land). Polar Biol 11:591–599CrossRefGoogle Scholar
  18. Bölter M, Blume H-P, Schneider D, Beyer L (1997) Soil properties and distributions of invertebrates and bacteria from King George Island (Arctowski Station), maritime Antarctic. Polar Biol 18:295–304CrossRefGoogle Scholar
  19. Campbell IB, Claridge CGG (1987) Antarctica — soils, weathering processes and climate. Elsevier, AmsterdamGoogle Scholar
  20. Chen J, Blume H-P, Beyer L (2000) Weathering of rocks induced by lichen colonization — a review. Catena 39:121–146CrossRefGoogle Scholar
  21. Chen J, Gong ZT (1995) Role of lichens in weathering and soil-forming processes in Fildes Peninsula, Antarct Pedosph 5:305–314Google Scholar
  22. Goodwin J (1993) Holocene deglaciation sea level change and the emergence of the Windmill Islands, Budd Coast, Antarctica. Quatern Res 37:10–18Google Scholar
  23. ISSS-WRB [International Soil Science Society — World Reference Base for Soil Resources] (1998) World Reference base for soil resources. World Soil Resources Reports 84, ISSSS-ISRIC-FAO, RomeGoogle Scholar
  24. Kopp D (1972) Periglaziale Umlagerungs-(Perstruktions-)zonen im nordmitteleuropäischen Tiefland und ihre bodengenetische Bedeutung. Tag-Ber deutsche Landwirtsch-Wiss Berlin 102:55–81Google Scholar
  25. Kopp D, Kowalkowski A (1990) Cryogenic and pedogenic perstraction in Tertiary and Quaternary deposits, as exemplified in the outcrop of Sternebeck. Quat Stud Poland 9:1–71Google Scholar
  26. Kowalkowski A, Borzyskowiski J (1973) The role of periglacial and extraperiglacial perstructions in the formation of soil profile in central Europe. Folia Quat 49:37–45Google Scholar
  27. Kuhn D (1997) Genese, Ökologie und Soziologie einer Bodengesellschaft in einem Periglazialgebiet der König-Georg-Insel (West-Antarktis). Schriftenr Inst Pflanzenern Bodenkd, Univ Kiel, No 40Google Scholar
  28. Melick D, Hovenden M, Seppelt RD (1994) Phytogeography of bryophyte and lichen vegetation in the Windmill Islands. Continental Antarctica. Vegetation 111:71–87Google Scholar
  29. Myrcha A, Tatur A (1991) Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antarctic. Pol Polar Res 12:3–24Google Scholar
  30. O'Brien R, Romans G, Robertson L (1979) Three soil profiles from Elephant Island, South Shetland Islands. Br Antarct Surv Bull 47:1–12Google Scholar
  31. Schlichting E, Blume H-P, Stahr K (1995) Bodenkundliches Praktikum, 2. Aufl. Blackwell, BerlinGoogle Scholar
  32. Tatur A (1989) Ornithogenic soils of maritime Antarctic. Pol Polar Res 10:481–532Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • H.-P. Blume
  • L. Beyer
  • E. Kalk
  • D. Kuhn

There are no affiliations available

Personalised recommendations